• Title/Summary/Keyword: CCTV영상

Search Result 603, Processing Time 0.03 seconds

Comparison of detection rates Area sensors and 3D spatial division multiple sensors for detecting obstacles in the screen door (스크린도어의 장애물 검지를 위한 Area센서와 다중공간분할 3D센서의 검지율 비교 분석)

  • Yoo, Bong-Seok;Lee, Hyun-Su;Jin, Ju-Hyun;Kim, Jong-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.561-566
    • /
    • 2016
  • A subway platform is equipped with screen doors in oder to avoid accidents of passengers, where Area sensors are installed for detecting obstacles in the screen doors. However, there exist frequent operating errors in screen doors due to dusts, sunlight, snow, and bugs. It is required to develope a detection device which reduces errors and elaborates detection function. In this paper, we compared the detection rates of the Area sensor the 3D sensor using CCTV-based image data with installing sensors at the screen door in Munyang station Daegu, where 3D sensor is applied with the space division multiple detection algorithms. It is measured that the detection rate of 3D sensor and Area sensor is approximately 89.61% and 78.88%, respectively. The results confirmed that 3D senor has higher detection rate compared with Area sensor with the rate of 6.87~9.79%, and 3D sensor has benefit in the aspect of installation fee.

A design and implementation of Intelligent object recognition system in urban railway (도시철도내 지능형 객체인식 시스템 구성 및 설계)

  • Park, Ho-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.209-214
    • /
    • 2018
  • The subway, which is an urban railway, is the core of public transportation. Urban railways are always exposed to serious problems such as theft, crime and terrorism, as many passengers use them. Especially, due to the nature of urban railway environment, the scope of surveillance is widely dispersed and the range of surveillance target is rapidly increasing. Therefore, it is difficult to perform comprehensive management by passive surveillance like existing CCTV. In this paper, we propose the implementation, design method and object recognition algorithm for intelligent object recognition system in urban railway. The object recognition system that we propose is to analyze the camera images in the history and to recognize the situations where there are objects in the landing area and the waiting area that are not moving for more than a certain time. The proposed algorithm proved its effectiveness by showing detection rate of 100% for Selected area detection, 82% for detection in neglected object, and 94% for motionless object detection, compared with 84.62% object recognition rate using existing Kalman filter.

A Study on the Estimation of Center of Turning Circle of Anchoring Vessel using Automatic Identification System Data in VTS (VTS에서 AIS데이터를 활용한 정박선의 선회중심 추정에 관한 연구)

  • Kim, Kwang-Il;Jeong, Jung Sik;Park, Gyei-Kark
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.337-343
    • /
    • 2013
  • To ensure the safety for vessels anchored in stormy weather, duty officer and VTS operator have to frequently check whether their anchors are dragging. To judge dragging of the anchored vessel, it is important for VTS operator to recognize the turning circle and its center of the anchored vessel. The judgement for the anchored vessel dragging can be made by using Radar and AIS. If it is available, CCTV or eye-sighting can be used to know the center of turing circle. However, the VTS system collects individual ship's dynamic information from AIS and ARPA radar and monitors of the anchored vessels, it is difficult for VTS operator not only to get the detailed status information of the vessels, but also to know the center of turning circle. In this study, we propose an efficient algorithm to estimate the center of turning circle of anchored vessel by using the ship's heading and position data, which were from AIS. To verify the effectiveness of the proposed algorithm, the experimental study was made for the anchored vessel under real environments.

Design of Pedestrian Detection Algorithm Using Feature Data in Multiple Pedestrian Tracking Process (다수의 보행자 추적과정에서 특징정보를 이용한 보행자 검출 알고리즘 설계)

  • Han, Myung-ho;Ryu, Chang-ju;Lee, Sang-duck;Han, Seung-jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.641-647
    • /
    • 2018
  • Recently, CCTV, which provides video information for multiple purposes, has been transformed into an intelligent, and the range of automation applications increased using the computer vision. A highly reliable detection method must be performed for accurate recognition of pedestrians and vehicles and various methods are being studied for this purpose. In such an object detection system. In this paper, we propose a method to detect a large number of pedestrians by acquiring three characteristic information that features of color information using HSI, motion vector information and shaping information using HOG feature information of a pedestrian in a situation where a large number of pedestrians are moving. The proposed method distinguishes each pedestrian while minimizing the failure or confusion of pedestrian detection and tracking. Also when pedestrians approach or overlap, pedestrians are identified and detected using stored frame feature data.

Crowd Behavior Detection using Convolutional Neural Network (컨볼루션 뉴럴 네트워크를 이용한 군중 행동 감지)

  • Ullah, Waseem;Ullah, Fath U Min;Baik, Sung Wook;Lee, Mi Young
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.6
    • /
    • pp.7-14
    • /
    • 2019
  • The automatic monitoring and detection of crowd behavior in the surveillance videos has obtained significant attention in the field of computer vision due to its vast applications such as security, safety and protection of assets etc. Also, the field of crowd analysis is growing upwards in the research community. For this purpose, it is very necessary to detect and analyze the crowd behavior. In this paper, we proposed a deep learning-based method which detects abnormal activities in surveillance cameras installed in a smart city. A fine-tuned VGG-16 model is trained on publicly available benchmark crowd dataset and is tested on real-time streaming. The CCTV camera captures the video stream, when abnormal activity is detected, an alert is generated and is sent to the nearest police station to take immediate action before further loss. We experimentally have proven that the proposed method outperforms over the existing state-of-the-art techniques.

Video Data Collection Scheme From Vehicle Black Box Using Time and Location Information for Public Safety (사회 안전망 구축을 위한 시간과 위치 정보 기반의 차량 블랙박스 영상물 수집 기법)

  • Choi, Jae-Duck;Chae, Kang-Suk;Jung, Sou-Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.4
    • /
    • pp.771-783
    • /
    • 2012
  • This paper proposes a scheme to collect video data of the vehicle black box in order to strengthen the public safety. The existing schemes, such as surveillance system with the fixed CCTV and car black box, have privacy issues, network traffic overhead and the storage space problems because all video data are sent to the central server. In this paper, the central server only collects the video data related to the accident or the criminal offense using the GPS information and time in order to investigation of the accident or the criminal offense. The proposed scheme addresses the privacy issues and reduces network traffic overhead and the storage space of the central server since the central server collects the video data only related to the accident and the criminal offense. The implementation and experiment shows that our service is feasible. The proposed service can be used as a component of remote surveillance system to prevent the criminal offense and to investigate the criminal offense.

Design of YOLO-based Removable System for Pet Monitoring (반려동물 모니터링을 위한 YOLO 기반의 이동식 시스템 설계)

  • Lee, Min-Hye;Kang, Jun-Young;Lim, Soon-Ja
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.22-27
    • /
    • 2020
  • Recently, as the number of households raising pets increases due to the increase of single households, there is a need for a system for monitoring the status or behavior of pets. There are regional limitations in the monitoring of pets using domestic CCTVs, which requires a large number of CCTVs or restricts the behavior of pets. In this paper, we propose a mobile system for detecting and tracking cats using deep learning to solve the regional limitations of pet monitoring. We use YOLO (You Look Only Once), an object detection neural network model, to learn the characteristics of pets and apply them to Raspberry Pi to track objects detected in an image. We have designed a mobile monitoring system that connects Raspberry Pi and a laptop via wireless LAN and can check the movement and condition of cats in real time.

Abnormal Situation Detection Algorithm via Sensors Fusion from One Person Households

  • Kim, Da-Hyeon;Ahn, Jun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.111-118
    • /
    • 2022
  • In recent years, the number of single-person elderly households has increased, but when an emergency situation occurs inside the house in the case of single-person households, it is difficult to inform the outside world. Various smart home solutions have been proposed to detect emergency situations in single-person households, but it is difficult to use video media such as home CCTV, which has problems in the privacy area. Furthermore, if only a single sensor is used to analyze the abnormal situation of the elderly in the house, accurate situational analysis is limited due to the constraint of data amount. In this paper, therefore, we propose an algorithm of abnormal situation detection fusion inside the house by fusing 2DLiDAR, dust, and voice sensors, which are closely related to everyday life while protecting privacy, based on their correlations. Moreover, this paper proves the algorithm's reliability through data collected in a real-world environment. Adnormal situations that are detectable and undetectable by the proposed algorithm are presented. This study focuses on the detection of adnormal situations in the house and will be helpful in the lives of single-household users.

LSTM(Long Short-Term Memory)-Based Abnormal Behavior Recognition Using AlphaPose (AlphaPose를 활용한 LSTM(Long Short-Term Memory) 기반 이상행동인식)

  • Bae, Hyun-Jae;Jang, Gyu-Jin;Kim, Young-Hun;Kim, Jin-Pyung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.5
    • /
    • pp.187-194
    • /
    • 2021
  • A person's behavioral recognition is the recognition of what a person does according to joint movements. To this end, we utilize computer vision tasks that are utilized in image processing. Human behavior recognition is a safety accident response service that combines deep learning and CCTV, and can be applied within the safety management site. Existing studies are relatively lacking in behavioral recognition studies through human joint keypoint extraction by utilizing deep learning. There were also problems that were difficult to manage workers continuously and systematically at safety management sites. In this paper, to address these problems, we propose a method to recognize risk behavior using only joint keypoints and joint motion information. AlphaPose, one of the pose estimation methods, was used to extract joint keypoints in the body part. The extracted joint keypoints were sequentially entered into the Long Short-Term Memory (LSTM) model to be learned with continuous data. After checking the behavioral recognition accuracy, it was confirmed that the accuracy of the "Lying Down" behavioral recognition results was high.

2-Stage Detection and Classification Network for Kiosk User Analysis (디스플레이형 자판기 사용자 분석을 위한 이중 단계 검출 및 분류 망)

  • Seo, Ji-Won;Kim, Mi-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.668-674
    • /
    • 2022
  • Machine learning techniques using visual data have high usability in fields of industry and service such as scene recognition, fault detection, security and user analysis. Among these, user analysis through the videos from CCTV is one of the practical way of using vision data. Also, many studies about lightweight artificial neural network have been published to increase high usability for mobile and embedded environment so far. In this study, we propose the network combining the object detection and classification for mobile graphic processing unit. This network detects pedestrian and face, classifies age and gender from detected face. Proposed network is constructed based on MobileNet, YOLOv2 and skip connection. Both detection and classification models are trained individually and combined as 2-stage structure. Also, attention mechanism is used to improve detection and classification ability. Nvidia Jetson Nano is used to run and evaluate the proposed system.