• Title/Summary/Keyword: CCL17)

Search Result 86, Processing Time 0.032 seconds

Conjugation of Cyclohexane Metabolite in Liver Damaged Rats

  • Joh, Hyun-Sung;Yoon, Chong-Guk
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.361-370
    • /
    • 2006
  • To evaluate an effect of pathological liver damage on the conjugation of cyclohexane metabolites, rats were pretreated with 50% $CCl_4$ dissolved in olive oil (0.1 ml/100 g body weight) 10 or 17 times intraperitoneally at intervals of every other day. On the basis of liver function, the animals pretreated with $CCl_4$ 10 times were identified as acutely liver damaged ones and the animals pretreated with $CCl_4$ 17 times were identified as severly liver damaged ones. To these liver damaged animals, cyclohexane (a single dose of 1.56 g/kg body weight, i.p.) was administered at 48 hr after the last injection of $CCl_4$. The rats were sacrificed at 4 or 8 hr after injection of cyclohexane. The cyclohexane metabolites, cyclohexanol (CH-ol), cyclohexane-1,2-diol (CH-1,2-diol), cyclohexane-1,4-diol (CH-1,4-diol), and their glucuronyl conjugates and cyclohexanone were detected in the urine of cyclohexane treated rats. The urinary concentration of cyclohexane metabolites was generally more increased in liver damaged animals than normal ones, and the increasing rate was higher in $CCl_4$ 17 times injected rats than 10 times injected ones. And liver damaged.ats, especially $CCl_4$ 17 times treated ones, had an enhanced ability of glucuronyl conjugation to CH-ol analogues compared with normal group. Futhermore, CH-1,2 and 1,4-diol were all conjugated with glucuronic acid in $CCl_4$ 17 times injected animals. On the other hand, the increasing rate of activities of hepatic cytochrome P450 dependent aniline hydroxylase, alcohol dehydrogenase and urine diphosphate glucuronyl transferase was higher in 17 times $CCl_4$-treated rats compared with normal and $CCl_4$ 10 times injected animals. Taken all together, it is assumed that an increased urinary excretion amount of cyclohexane metabolites in liver damaged rats might be caused by an increase in the activities of cyclohexane metabolizing enzymes. And enhanced conjugating ability of CH-ol in liver damaged animals and novel finding of conjugating form of CH-1,2 and 1,4-diol might be caused by increase in the activity of hepatic diphosphouridine glucuronyltransferase.

  • PDF

Effect of Cyclohexane Treatment on the Liver Damage in CCl4-Pretreated Rats (CCl4전처치한 흰쥐에 Cyclohexane 투여가 간손상에 미치는 영향)

  • 윤종국;김현희
    • Toxicological Research
    • /
    • v.19 no.2
    • /
    • pp.105-114
    • /
    • 2003
  • TO evaluate an effect of cyclohexane treatment on the degree of liver damage, rats were induced liver damage with 10 or 17 times $CCl_4$ injection (0.1 m1/100 g body wt., 50% $CCl_4$ dis-solved in olive oil) at intervals of every other day. Cyclohexane (1.56 g/kg body wt., i.p.) was administrated to the animals at 48 hours after the last pretreatment of $CCl_4$ . Rats were sacrificed at 4 hours after injection of cyclohexane. On the basis of histopathological findings, liver weight/body weight (LW/ BW, %), activities of serum alanine aminotransferase (ALT), xanthine oxidase (XO) and akaline phosphatase (ALP), and contents of liver protein and manlondialdehyde (MDA), $CCl_4$ -pretreatment induced liver damage. And $CCl_4$ 17 times treated group showed more severe liver damage than $CCl_4$ 10 times treated group. Administration of one dose of cyclohexane to $CCl_4$ 10 times treated animals resulted in the enhanced liver damage; liver necrosis with proliferation of fibroblast and bile duct abnormality, and increase in hepatic MDA content and the activities of serum ALP and ALT, But the enhanced liver damage was not found in $CCl_4$ 17 times treated animals. Serum cyclohexanone concentrations at 4 or 8 hours after injection of cyclohexane were higher in all liver damaged groups than normal group and were somewhat higher In $CCl_4$ 17 times treated animals than $CCl_4$ 10 times treated ones. Among the oxygen free radical metabolizing enzymes, hepatic cytochrome P45O dependent aniline hydroxylase (CYPdAH) activity in cyclohexane metabolizing enzyme system was meaningfully increased by the injection of cyclohexane to the liver damaged rats, with increased Vmax and high affinity to aniline. LW/BW (%) and activities of serum XO and ALT were more significantly increased in liver damaged groups than normal group by administration of cyclohexanone. In conclusion, it is assumed that an enhancement of liver damage by injection of one dose of cyclohexane to liver damaged animals might be caused by oxygen free radicals and cyclohexanone.

The Effect of Lactobacillus Mixture Culture Fluid Extracts on Atopic Dermatitis Chemokine Expression of in HaCaT Cells (HaCaT 세포에서 Lactobacillus 혼합배양액 추출물이 아토피관련 케모카인 발현에 미치는 효과)

  • Hong, Soo-Jeong;Lee, Won-Jae;Jo, Eul-Hwa;Ahn, Seong-Hun
    • Korean Journal of Acupuncture
    • /
    • v.34 no.2
    • /
    • pp.82-87
    • /
    • 2017
  • Objectives : Recently the case of lactobacillus mixture culture fluid appliment was reported. In this study, anti-inflamation effects and anti-allergy effects were studied by stimulus of lactobacillus mixture culture fluid extracts in HaCaT cells. Methods : The atopic dermatitis were induced by TNF-${\alpha}$ and interferon-${\gamma}$ in HaCaT cells. TARC/CCL17, MDC/CCL22, RANTES/CCL5 and ROS production were investigated to explain anti-inflamation and allergy effects of lactobacillus mixture culture fluid with cell-enzyme-linked Immunosorbent assay in 450 nm, 485 nm, 535 nm with spectro-fluorometer. Results : The extracts of lactobacillus mixture culture fluid were decreased TARC/CCL17, MDC/CCL22, RANTES/CCL5 expressions and ROS production with a concentration dependent manner. Conclusions : The effects mechanism of Lactobacillus mixed culture fluid for atopic dermatitis symptoms were considered to be explain anti-inflamation and allergy effects via control of cytokine, chemokine and ROS production, and the fluid could be applied in skin cells directly. But classified AD symptom degrees reported in clinical case before as Reaction Period, Reduction Period, Effect Period, Reproduction Period and Rebound Period could not be explained. Further study will be expected.

Brazilin downregulates CCL20 expression via regulation of STAT3 phosphorylation in TNF-α/IL-17A/IFN-γ-induced HaCaT cells (TNF-α/IL-17A/IFN-γ 유도된 HaCaT 세포에서 브라질린의 STAT3 인산화 억제를 통한 CCL20 저해 효과)

  • Kim, Mi Ran;Hwang, Hyung Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.185-192
    • /
    • 2021
  • Psoriasis is a chronic intractable skin disease caused by various inflammatory cytokines such as IL-6, CXCL8, TNF-α, and IFN-γ, as well as IL-17A secreted from Th17 cells and is characterized by hyperkeratosis and chronic inflammation of the epidermis. Brazilin, an active ingredient of Caesalpinia sappan L., is known to exert antioxidant and anti-inflammatory activity, and function in skin barrier improvement. In particular, it was shown as a potential material for treating psoriasis in a tumor necrosis factor (TNF)-α-stimulated HaCaT keratinocyte model. However, the direct regulation of the C-C motif chemokine ligand (CCL) 20, a psoriasis-inducing factor, by brazilin has not been reported. Therefore, in this study, we investigated the suppression of CCL20 and the regulatory mechanism by brazilin using a psoriasis-like model. First, brazilin downregulated CCL20 and CXCL8 in IL-17A-stimulated HaCaT cells in a concentration-dependent manner by inhibiting signal transducer and transcription (STAT)3 phosphorylation. In addition, brazilin significantly inhibited the expression of psoriasis-related genes CXCL8, CCL20, IL-1, IL-6, and TNF-α in TNF-α/IL-17A/IFN-γ-stimulated HaCaT cells. Moreover, brazilin also had a positive effect on improving the skin barrier in TNF-α/IL-17A/IFN-γ-stimulated HaCaT cells. The above results indicated that brazilin ultimately downregulated CCL20 expression by inhibiting STAT3 phosphorylation, and also suppressed the expression of psoriasis-induced cytokines. If the efficacy of brazilin in improving psoriasis is verified through animal models and clinical trials in the future, it may represent a potentially therapeutic substance for psoriasis patients.

Protective Effects of Succinic Acid of Succiniter against Liver Toxicity (간 독성에 대한 보석 호박 호박산의 간 보호 효과)

  • Kim, Hong-Bi;Ha, Bae-Jin
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.896-901
    • /
    • 2017
  • This study was performed to investigate the protective effects of succinic acid of Succiniter against carbon tetrachloride ($CCl_4$)-induced hepatotoxicity in rats. After an adaptation period of one week, Sprague-Dawley rats were administered succinic acid of Succiniter at 200 mg/kg every day for 21 days. Then $CCl_4$ (3.3 ml/kg) was intraperitoneally injected into rats of the other groups except the normal group, five hours after the last treatment of succinic acid of Succiniter on day 21. The succinic acid-treated group showed 93.20% and 88.76% of inhibitory effects in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities, respectively, compared with the $CCl_4-treated$ group. The succinic acid-treated group showed inhibition of malonedialdehyde (MDA) by 85.17% compared with the $CCl_4-treated$ group. The succinic acid-treated group in liver homogenate promoted effects of 38.65% and 47.99% in superoxide dismutase (SOD) and catalase (CAT), respectively, compared with the $CCl_4-treated$ group. In conclusion, the AST and ALT activities of the succinic acid-treated group were both decreased compared with the $CCl_4-treated$ group. The MDA level of the succinic acid-treated group was decreased compared with the $CCl_4-treated$ group. However, the SOD and CAT levels of the succinic acid-treated group in liver homogenate were both increased compared with the $CCl_4-treated$ group. Also, histological examinations showed that the liver cell necrosis and centrilobular congestion aggregation induced by $CCl_4$ were clearly eliminated by treatment with succinic acid of Succiniter. These results suggest that succinic acid of Succiniter has a protective effect against liver damage and could be used in the development of the appropriate drug.

A Study on the Cyclohexane Metabolism Liver Damaged Rats

  • Joh, Hyun-Sung;Kim, Hyun-Hee;Choi, Hye-Jung;Oh, Jeong-Dae;Lee, Sang-Hee;Yoon, Chong-Guk;Chung, Chin-Kap;Lee, Sang-Il;Cho, Hyun-Gug
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.157-157
    • /
    • 2003
  • To evaluate an effect of pathological liver damage on the cyclohexane metabolism, rats were pretreated with 50% $CCl_4$ dissolved in olive oil (0.1$\mell$/100g body weight) 10 or 17 times intraperitoneally at intervals of every other day. On the basis of liver function and histological findings, the animals pretreated with $CCl_4$ 10 times were identified as acutely liver damaged ones and the animals pretreated with $CCl_4$ 17 times were identified as severly liver damaged ones, with fibrosis, biliary abnormality and mild injury both in the kidneys and the lungs. To these liver damaged animals, cyclohexane (a single dose of 1.56g/kg body weight, i.p.) was administrated at 48 hours after the last injection of $CCl_4$. The rats were sacrificed at 4 or 8 hours after injection of cyclohexane. The cyclohexane metabolites; cyclohexanol (CH-ol), cyclohexane-1, 2-diol (CH-1, 2-diol), cyclohexane-l, 4-diol (CH-1, 4-diol), and their glucuronyl conjugates and cyclohexanone (CH-one) were detected in the urine of cyclohexane treated rats. After cyclohexane treatment, the serum levels of CH-ol and CH-one were remarkably increased at 4 hours and then decreased at 8 hours in normal group. Whereas in liver damaged rats, these cyclohexane metabolites were higher at 8 hours than at 4 hours. The excretion rate of cyclohexane metabolites from serum into urine was more decreased in liver damaged animals than normal group, with the levels of excretion rate being lower in $CCl_4$ 17 times injected animals than 10 times injected ones. However, it was interesting that the urinary concentration of cyclohexane metabolites was generally more increased in liver damaged animals than normal ones, and the increasing rate was higher in $CCl_4$ 17 times injected rats than 10 times injected ones. And liver damaged rats, especially $CCl_4$ 17 times treated ones, had an enhanced ability of glucuronyl conjugation to cyclohexanol analogues compared with normal group. Futhermore, CH-1, 2 and 1, 4-diol were all conjugated with glucuronic acid in $CCl_4$ 17 times injected animals. In conclusion, the metabolic rate of cyclohexane was unexpectably accelerated and it may be caused by physiological adaptation of adjacent intact hepatocyte in damaged liver.

  • PDF

Wogonin inhibits Cytokine-induced TARC/CCL17 Expression by Suppression of NF-${\kappa}B$ activation via p38 MAP kinase Signalning Pathways in HaCaT Keratinocytes

  • Jang, Seon-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.1017-1024
    • /
    • 2007
  • Thymus and activation-regulated chemokine (TARC/CCL-17), produced by keratinocytes, is a CC chemokine known to selectively Th2 type T cells via $CCR4^+$ and is implicated in the development of atopic dermatitis (AD). TARC/CCL17 expression was induced by cytokines such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interferon-${\gamma}$ (IFN-${\gamma}$). We recently found that the wogonin, a flavone isolated from Scutellaria baicalensis, suppressed TARC expression via heme oxygenase 1 (HO1) in human keratinocytes induced with mite antigen. However, little is known about the inhibitory mechanism of wogonin on TARC/CCL-17 expression stimulated with cytokines. To investigate the inhibitory mechanism, I determined the inhibitory effects of wogonin on the activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and $I{\kappa}B{\alpha}$ phosphorylation, and also examined the activation of p38 MAP kainase in HaCaT keratinocytes stimulated with TNF-${\alpha}$ and IFN-${\gamma}$. Wogonin inhibited NF-${\kappa}B$-DNA complex, NF-${\kappa}B$ binding activity, and the phosphorylation of $I{\kappa}B{\alpha}$ in a dose dependent manner. Wogonin also inhibited the translocation of NF-${\kappa}B$ from cytosol to nucleus. Moreover, the phosphorylation of of p38 MAP kinase in the TNF-${\alpha}$ and IFN-${\gamma}$-stimulated HaCaT keratinocytes were suppressed by wogonin in a dose dependent manner. These results suggest that wogonin may inhibit cytokine-induced NF-${\kappa}B$ activation by $I{\kappa}B{\alpha}$ degradation via suppression of p38 MAP kinase signaling pathway in keratinocytes and modulation of wogonin signaling pathway may be beneficial for the treatment of AD.

A Noble Therapeutic Approach of Atopic dermatitis by Development of Th2 Chemokine Inhibitors from Natural Products : Inhibitory Effect of Sophora flavescens Extract in Atopic Dermatitis Model mice, NC/Nga (천연물 유래 Th2 케모카인 억제제 발굴에 의한 새로운 아토피 피부염 치료기술 개발 : 아토피 피부염 모델 NC/Nga 마우스에서 고삼 추출액의 억제 효과)

  • Jeong, Seung-Il;Choi, Byung-Min;Yun, Young-Gab;Lee, Jang-Won;Jang, Seon-Il
    • Herbal Formula Science
    • /
    • v.17 no.1
    • /
    • pp.141-151
    • /
    • 2009
  • We investigated the inhibitory effect of an oral administration of a Sophora flavescens Aiton ethanol extract (SFE) on the development of atopic dermatitis (AD) by using NC/Nga model mice. The induction of atopic dermatitis-like lesion was conducted by the removal of the back hairs and topical application of a mite antigen (Dermatophagoides farinae, Df) on to the back skin twice a week for 8 weeks. SFE was orally administered at a different doses (100-400 mg/kg). Atopic dermatitis-like skin lesions were evaluated by dermatitis scores, skin histology and immunological parameters (serum levels of IgE, TARC/CCL17, MDC/CCL22, and CTACK/CCL27). Oral administration of SFE significantly inhibited the clinical sign of Df-induced atopic dermatitis, including dermatitis score and leukocyte infiltration. Moreover, SFE suppressed significantly the serum IgE and Th2 chemokine (TARC/CCL17, MDC/CCL22, and CTACK/CCL27) levels in a concentration dependent manner. These results suggest that oral administration of SFE could reduce significantly the clinical signs and Th2 chemokines in Df-induced atopic dermatitis model mice. Therefore, SFE may be effective substances for the management of AD in human.

  • PDF

Effect of Cyclohexane Treatment on Serum Level of Glutathione S-Transferase Activity in Liver Damaged Rats ($CCl_4$ 에 의한 간손상 모델 실험동물에 있어서 cyclohexane 투여가 혈청 glutathione S-transferase 활성에 미치는 영향)

  • 오정대;윤종국
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.2
    • /
    • pp.80-86
    • /
    • 2003
  • To evaluate the effect of cyclohexane(CH) treatment on the serum levels of glutathion S-transferase(GST) activity in liver damaged animals, damaged liver was induced with pretreatment of 50% $CCl_4$ dissolved in olive oil (0.1 m1/100g body weight) intraperitoneally 17 times every other day. To $CCl_4$-treated rats, CH (1.56 g/kg body weight, i.p) was injected once and then the animals were sacrificed at 4 hours after injection of CH. The $CCl_4$-treated animals were identified as severe liver damage on the basis of liver functional findings, 1,e, increased serum levels of alanine aminotransferase(ALT), alkaline phosphate(ALP) and xanthine oxidase(XO) activities. On the other hand, $CCl_4$-treated animals injected with CH once($CCl_4$-pretreated animals) showed more decreased serum levels of ALT and XO, and more increased those of ALP rather than $CCl_4$-treated animals. In case of comparing the GST with ALT activity in liver, both $CCl_4$-treated and pretreated animals showed similar changing pattern of enzyme actvity. Especially $CCl_4$-pretreated animals showed significantly increased serum level of GST actvity compared with the $CCl_4$-treated those, whereas those of ALT showed reversed tendency. In aspects of GST enzyme kinetics, $CCl_4$-pretreated animals showed higher Vmax of liver GST enzyme than $CCl_4$-treated animals. In conclusion, injection of CH to the liver damaged rats led to enhanced liver damage and more increased activity of serum GST which may be chiefly caused by the enzyme induction.