• Title/Summary/Keyword: CCFL backlight

Search Result 104, Processing Time 0.026 seconds

Development of Backlight Unit by using Red, Green, Blue CCFL (Red, Green, Blue CCFL을 이용한 Backlight Unit 개발)

  • Yang, Seung-Soo;Song, Young-Ki;Kim, Seo-Yoon;Lee, Jung-Yeal
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.414-415
    • /
    • 2006
  • At present, Characteristic of high color reproduction for LCD products needed in Display market. Therefore, The improving methods of high color reproduction are alteration of color Filter or Red, Green, Blue phosphor alteration of CCFL. But High color reproduction phosphor is short life time as compared with conventional phosphor. In this experiment, by using split the Red, Green, Blue CCFL with high color reproduction phosphor instead of conventional high color reproduction CCFL. We knew that the high color reproduction RGB split CCFL BLU has same spectrum data and chromaticity, but has long life time as manufacturing RGB split CCFL and reduce chromaticity shift following long time discharge as compared with conventional high color reproduction CCFL.

  • PDF

Optical Characteristics of LED Backlight and CCFL Backlight for LCD-TV Applications (LCD TV용 LED백라이트와 CCFL백라이트의 광학 특성 평가 및 비교)

  • Ryu, Jin-Sun;Yu, Mi-Yeon;Park, Seung-Mi;Kim, Su-Jin;Ko, Jae-Hyeon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.69-72
    • /
    • 2009
  • Recently, LED(Light Emitting Diode) TV has attracted greate attention due to its super-slim form factore as well as low power consumption. LED TV is actually an LCD(Liquid Crystal Display) TV in which edge-lit LED backlight is adopted. In the presente study, we report on the comparison of optical characteristics 55-inch edge-lit LED backlight and CCFL(Cold Cathode Fluorescent Lam)backlight. The angular distribution of the luminance and the on-axis luminance gain on each optical component were investigated and compared. The effect of the backlight structure on the performance of the optical films was studied and discussed.

  • PDF

Characteristic Analysis for CCFL drive of LCD backlight (LCD용 백라이트의 CCFL 구동을 위한 특성해석)

  • Ju, Gyeong-Don;Yoon, Shin-Yong;Kim, Cherl-Jin;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.199-202
    • /
    • 2004
  • CCFL(Cold Cathode Fluorescent Lamp) are used to backlight of LCD(Liquid Crystal Display). This paper presents analysis of half-bridge type resonant inverter of CCFL drive in order to stable characteristics, and fluorescent lamp operation frequency is higher than resonant frequency for safe operation. Besides, The Piezoelectric ceramic transformer (PZT) is electro-mechanical device that transfers electrical energy through a mechanical vibration. The modified equivalent circuit model of the PZT considering the operating current level is derived to design the CCFL. The validity of this study was confirmed from the simulation and experiential result.

  • PDF

Display power analysis and design guidelines to reduce power consumption

  • Issa, Joseph
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.167-177
    • /
    • 2012
  • Cold cathode fluorescent lamps (CCFLs) are used to provide lighting for liquid crystal displays (LCDs). This paper presents a set of guidelines for measurement characterization and design to reduce the power consumption of CCFL LCD backlight inverters and panel electronics. The proposed methods aim to reduce the backlight power consumption by fine-tuning a back-light inverter for a specific LCD, using several methods. First, the authors describe their power measurement methodology; and next, they identify different areas for tuning a backlight inverter for a given display. The experiment results showed that power savings can range from 50 to 200mW if the backlight inverter is properly tuned. This paper also proposes an optimized configuration for light-emitting device (LED) panels to reduce power loss by selecting a LED with a specific input voltage and number of cells to help minimize power loss.

Luminescent Characteristics of External Electrode Fluorescent Lamp(EEFL) for LCD Backlight Applications (LCD Backlight용 외부전극 형광램프의 발광특성)

  • 이순석;임성규
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.12
    • /
    • pp.1016-1021
    • /
    • 2002
  • Luminescent characteristics of FLs were studied according to the structure of electrode for LCD backlight applications. The luminance and luminous efficiency of the FLs fabricated under same conditions were measured and evaluated as functions of magnitude of applied voltage and widths of external electrode. The luminance and luminous efficiency of CCFL at 12 V were 27600 cd/$m^2$ and 35.3 lm/w, respectively The luminance of EEFLS increased as the widths of external electrode increased, and the luminous efficiency of EEFLS showed to increase to 20 mm of electrode width) and to decrease at wider than 20 m of electrode widths. The luminance and luminous efficiency of EEFL with 20 mm of electrode widths were 21600 cd/$m^2$ and 26500 cd/$m^2$, 35.6 lm/w and 34.8 lm/w at 12 V, 14 V, respectively.

Characteristics of Motion-blur Free TFT-LCD using Short Persistent CCFL in Blinking Backlight Driving

  • Han, Jeong-Min;Ok, Chul-Ho;Hwang, Jeoung-Yeon;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.166-169
    • /
    • 2007
  • In applying LCD to TV application, one of the most significant factors to be improved is image sticking on the moving picture. LCD is different from CRT in the sense that it's continuous passive device, which holds images in entire frame period, while impulse type device generate image in very short time. To reduce image sticking problem related to hold type display mode, we made an experiment to drive TN-LCD like CRT. We made articulate images by turn on-off backlight, and we realized the ratio of Back Light on-off time by counting between on time and off time for video signal input during 1 frame (16.7 ms). Conventional CCFL (cold cathode fluorescent lamp) cannot follow fast on-off speed, so we evaluated new fluorescent substances of light source to improve residual light characteristic of CCFL. We realized articulate image generation similar to CRT by CCFL blinking drive and TN-LCD overdriving. As a result, reduced image sticking phenomenon was validated by naked eye and response time measurement.

Study of Blurring Free TFT-LCD Using Short Persistance Cold Cathode Fluorescent Lamp in Blinking Backlight Driving (단잔광 냉음극관을 이용한 잔상없는 TFT-LCD에 관한 연구)

  • Choi, Dae-Seub;Sin, Ho-Chul
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.145-148
    • /
    • 2012
  • In applying LCD to TV application, one of the most significant factors to be improved is image sticking on the moving picture. LCD is different from CRT in the sense that it's continuous passive device, which holds images in entire frame period, while impulse type device generate image in very short time. To reduce image sticking problem related to hold typedisplay mode, we made an experiment to drive TN-LCD like CRT. We made articulate images by turn on-off backlight, and we realized the ratio of Back Light on-off time by counting between on time and off time for video signal input during 1 frame (16.7ms). Conventional CCFL (cold cathode fluorescent lamp) cannot follow fast on-off speed, so we evaluated new fluorescent substances of light source to improve residual light characteristic of CCFL. We realized articulate image generation similar to CRT by CCFL blinking drive and TN-LCD overdriving. As a result, reduced image sticking phenomenon was validated by naked eye and response time measurement.

A Study on the Development of Pattern Design Tool for CCFL Backlight (CCFL 백라이트 패턴 설계툴 개발에 관한 연구)

  • Cho Young-Chang;Choi Byung-Jin;Yoon Jeong-Oh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.2
    • /
    • pp.79-85
    • /
    • 2006
  • As the portable information appliance is developed, the demand of flat panel display equipments and parts are steeply increased. Most of all, the applications of LCD such as LCD TV, monitor, digital camera, CNS(car navigation system) and game machine become diversified. With the result that the number of BLU production enterprise is increased and the research on the design of backlight with the superior optical properties is persistently in progress. In this study we developed the pattern design tools for CCFL(cold cathode flourescent lamp) backlight to improve the conventional pattern design environment in which the pattern is designed manually from the experience and the trial and error. For the verification of our research, we designed the light reflection surface patterns for a real model of backlight and we measured the brightness uniformity using the BM-7. From the brightness uniformity measurement, the BLU designed using the presented tool showed the tolerable performance only in the first try of pattern design rather than the fifth try of pattern design in case of the conventional pattern design.

  • PDF

Electro-optical Characteristics of LED Flat Light Source in Low Temperature Condition (LED 평판조명의 저온환경에서의 전기광학특성)

  • Han, Jeong-Min;Seo, Dae-Shik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.61-65
    • /
    • 2011
  • Recently, LCD (liquid crystal display) industry is needed to goods of high reliability and wide range temperature condition and it is interested in products for extremely cold condition without failure of light-up. In this experiment, we made the LED backlight unit for Automotive-navigation under the extremely cold condition. And for making this backlight unit, we used to eight side emitting type white LEDs with 3W high power LED. We could know that this backlight unit releases to 18,000 nit in 24W power consumption and start up voltage time is under the 1ms in the ambient temperature at -40.