• Title/Summary/Keyword: CCD array detector

Search Result 20, Processing Time 0.025 seconds

A New Small Size Digital Optical Ozone Monitor Using CCD Array as a UV Detector (UV 감지기로서 CCD어레이를 사용한 소형 디지털 광 오존모니터)

  • Chung, Wan-Young;Lee, Seung-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.158-163
    • /
    • 2008
  • Ozone monitor based on UV techniques has been widely used due to their signal stability. The high concentration ozone monitor for real time ozone monitoring from ozone generator was composed of a low pressure mercury lamp as UV source and a photo multiplier tube as UV detector. The structure could be very useful for low price high concentration ozone monitor and showed good linearity to ozone in the concentration range between 0.05 and 2wt%. For accurate ambient ozone monitoring, the system composed of a high power pulsed xenon lamp as UV source, an optical spectrometer with a high sensitivity linear CCD array as UV detector. The optical signal form the CCD array was converted to digital signal, and the digital signal was displayed on screen using PC interface. The developed system showed good linearity and sensitivity in relatively low measuring range between 10ppm and 10,000ppm, and showed some feasibility of hish resolution ozone monitor using CCD array as a photodetecor.

Optical Ozone Monitor Using UV Source

  • Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.49-52
    • /
    • 2003
  • Two types of ozone monitors using UV absorption method were tried in consideration of cost of the monitor and precision in measuring. The high concentration ozone monitor for high concentration real time ozone monitoring from ozone generator was composed of a low pressure mercury lamp as UV source, a photo multiplier tube as UV detector and signal processing unit for the most part. This structure could be very useful for low price high concentration ozone monitor due to simple system structure and fairly good monitoring characteristics. The developed system showed good linear output characteristics to ozone in the measuring concentration range of 0.05 and 2 wt.%. For accuracy ambient ozone monitoring in ambient in ppm level, the system composed of a high power pulsed xenon lamp as UV source, an optical spectrometer with a high sensitivity linear CCD array as UV detector and signal processing unit in brief speaking was proposed our study for the first time in the world. The developed system showed good linearity and sensitivity in relative low measuring range between 10ppm and 10,000ppm, and showed some feasibility of high resolution ozone monitor using CCD array as photodetector.

  • PDF

Optical System Design for CCTV Camera (CCTV 카메라용 광학계 설계)

  • Lee, Soo Cheon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.31-35
    • /
    • 2008
  • Purpose: This study is to design a triplet optical system for CCTV camera lens. Methods: It was a telescopic lens with $5^{\circ}$ field angle, 56 mm focal length, 20 mm diameter, and 2/3 inches sized CCD array detector. Results: The performance of the subject optical system was evaluated by applying ray fan, spot diagram, and diffraction optical MTF. The wavelength was achromatized at Fraunhofer C, d and F-line, and both MTF and tangential & sagittal MTF shows more than 70% at spatial frequency of 50 linepairs/mm. Conclusions: The marketable triplet optical system for CCTV camera was designed and its utility was considered.

  • PDF

Realization of Optical Measurement using White Source and Fourier-domain (고휘도 백색 LED 및 CCD Array Detector를 사용한 Fourier-Domain 방식의 광 계측 시스템 구현)

  • Kim, Kwang-Yoo;Lee, Jung-Rul;Eom, Jin-Seob
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • In this study, the Fourier-Domain optical measurement system, which use a commercial high power white LED as a light source and a CCD linear-array as a detector is realized. The proposed system shows the axial measurement range over $125{\mu}m$ and the axial resolution below $1.24{\mu}m$. This system has the advantage of the cost effective and compact structure and also the better resolution than the existing technologies, which have a resolution above a few of ${\mu}m$ and use bulky and/or expensive broadband light sources.

Realization of CCD Image Sensor Driver for Spectral-Domain Optical Measurement System (Spectral-Domain 광 계측을 위한 CCD 이미지 센서 드라이버 제작)

  • Kim, Hoon-Sup;Lee, Jung-Ryul;Eom, Jin-Seob
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.125-128
    • /
    • 2007
  • This paper presents Spectral-Domain optical measurement system using self-fabricated CCD sensor driver. The light source is a high brightness white LED and the detector is a 2048 array typed CCD image sensor. I have fabricated the CCD sensor driver to generate four pulse signals, which are the CCD-driving pulses. Using this Spectral Domain optical measurement system, the distance value between the reference mirror and the sample mirror can be obtained successfully.

  • PDF

INTRODUCTION OF NUC ALGORITHM IN ON-BOARD RELATIVE RADIOMERIC CALIBRATION OF KOMPSAT-2

  • Song, J.H.;Choi, M.J.;Seo, D.C.;Lee, D.H.;Lim, H.S.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.504-507
    • /
    • 2007
  • The KOMPSAT-2 satellite is a push-broom system with MSC (Multi Spectral Camera) which contains a panchromatic band and four multi-spectral bands covering the spectral range from 450nm to 900nm. The PAN band is composed of six CCD array with 2528 pixels. And the MS band has one CCD array with 3792 pixels. Raw imagery generated from a push-broom sensor contains vertical streaks caused by variability in detector response, variability in lens falloff, pixel area, output amplifiers and especially electrical gain and offset. Relative radiometric calibration is necessary to account for the detector-to-detector non-uniformity in this raw imagery. Non-uniformity correction (NUC) is that the process of performing on-board relative correction of gain and offset for each pixel to improve data compressibility and to reduce banding and streaking from aggregation or re-sampling in the imagery. A relative gain and offset are calculated for each detector using scenes from uniform target area such as a large desert, forest, sea. In the NUC of KOMPSAT-2, The NUC table for each pixel are divided as HF NUC (high frequency NUC) and LF NUC (low frequency NUC) to apply to few restricted facts in the operating system ofKOMPSAT-2. This work presents the algorithm and process of NUC table generation and shows the imagery to compare with and without calibration.

  • PDF

Optical Fiber Atmospheric Ozone Monitor (광섬유 대기오존 모니터)

  • 정완영
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.201-204
    • /
    • 2002
  • A high accuracy ozone monitor using UV absorption method was developed for ambient ozone monitoring. The system was mainly composed of a high power pulsed xenon lamp as UV source, an optical spectrometer with a high sensitivity linear CCD array as UV detector and signal processing unit. The optical signal from the CCD array that provides unusually high response and excellent optical resolution for ozone concentration was converted to digital signal and the digital signal was displayed on screen using PC interface. The optical signal was propagated using optic fiber to reduce optical loss to increase the accuracy of the measuring system. This paper has been studied a interworking signalling protocol between two hybrid networks by analyzing Satellite B-ISDN architecture, DSS2 Layer 3 Signalling protocol, B-ISUP protocol, S-BISUP protocol stack and so on. Also in the paper, messages and primitives have been defined for B-ISDN's Connection Type, Ownership and each protocol in order to connect point-to-multipoint. The ozone sensing properties of the CCD ozone monitor was compared with those of the photo multiplier ozone monitor.

  • PDF

Performance and functionality of SRI detector array and focal plane electronics

  • Kim, Young-Sun;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Chang, Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.804-807
    • /
    • 2006
  • The SRI(Super Resolution Imager) with 800mm aperture primary mirror is the ground development model of the high resolution satellite camera. The SRI focal plane electronics including detector array generates the data for high-resolution images by converting incoming light into digital stream of pixel data. Since the focal plane including a detector is the basic building block of the camera system, the main system performances is directly determined by its performance. This paper measures the SRI focal plane electronics’ performance such as the dark signal, the dark signal noise, the linearity, the PRNU(Photo Response Non-Uniformity), the SNR(Signal to Noise Ratio) and the sensor saturation capability. In addition, this paper verifies the various functionalities of the SRI focal plane electronics. The electrical test equipment with the specialized software and the optical test equipments such as the integrating sphere, the rotation stage and the target are implemented and used to verify these functionalities and performances.

  • PDF

Development of fabric-based optical fiber tactile sensor using optical fiber bending loss (광섬유 굽힘 손실을 이용한 직물 기반의 광섬유 촉각센서 개발)

  • Kim, Ju-Young;Baek, Sang-Ho;Lee, Jung-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.210-216
    • /
    • 2009
  • In this paper the tactile sensor system based on the bending loss of optical fiber sensor is presented. The sensor array was designed with fabric structure. The optical measuring system was composed of LED for light source and CCD camera for the signal light detector. Performance of this tactile sensor system was evaluated in various environments and compared with Harmon's design criteria. The result shows that load range is 3 g$\sim$100 g, resolution is 1.5 g, hysteresis error is 1.5%. The response linearity is good and flexibility of sensor array is excellent.

The Performance Improvement of a Linear CCD Sensor Using an Automatic Threshold Control Algorithm for Displacement Measurement

  • Shin, Myung-Kwan;Choi, Kyo-Soon;Park, Kyi-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1417-1422
    • /
    • 2005
  • Among the sensors mainly used for displacement measurement, there are a linear CCD(Charge Coupled Device) and a PSD(Position Sensitive Detector) as a non-contact type. Their structures are different very much, which means that the signal processing of both sensors should be applied in the different ways. Most of the displacement measurement systems to get the 3-D shape profile of an object using a linear CCD are a computer-based system. It means that all of algorithms and mathematical operations are performed through a computer program to measure the displacement. However, in this paper, the developed system has microprocessor and other digital components that make the system measure the displacement of an object without a computer. The thing different from the previous system is that AVR microprocessor and FPGA(Field Programmable Gate Array) technology, and a comparator is used to play the role of an A/D(Analog to Digital) converter. Furthermore, an ATC(Automatic Threshold Control) algorithm is applied to find the highest pixel data that has the real displacement information. According to the size of the light circle incident on the surface of the CCD, the threshold value to remove the noise and useless data is changed by the operation of AVR microprocessor. The total system consists of FPGA, AVR microprocessor, and the comparator. The developed system has the improvement and shows the better performance than the system not using the ATC algorithm for displacement measurement.

  • PDF