• Title/Summary/Keyword: CCD Imaging Sensor

Search Result 40, Processing Time 0.027 seconds

GPR Development for Landmine Detection (지뢰탐지를 위한 GPR 시스템의 개발)

  • Sato, Motoyuki;Fujiwara, Jun;Feng, Xuan;Zhou, Zheng-Shu;Kobayashi, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.270-279
    • /
    • 2005
  • Under the research project supported by Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), we have conducted the development of GPR systems for landmine detection. Until 2005, we have finished development of two prototype GPR systems, namely ALIS (Advanced Landmine Imaging System) and SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar). ALIS is a novel landmine detection sensor system combined with a metal detector and GPR. This is a hand-held equipment, which has a sensor position tracking system, and can visualize the sensor output in real time. In order to achieve the sensor tracking system, ALIS needs only one CCD camera attached on the sensor handle. The CCD image is superimposed with the GPR and metal detector signal, and the detection and identification of buried targets is quite easy and reliable. Field evaluation test of ALIS was conducted in December 2004 in Afghanistan, and we demonstrated that it can detect buried antipersonnel landmines, and can also discriminate metal fragments from landmines. SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar) is a machine mounted sensor system composed of B GPR and a metal detector. The GPR employs an array antenna for advanced signal processing for better subsurface imaging. SAR-GPR combined with synthetic aperture radar algorithm, can suppress clutter and can image buried objects in strongly inhomogeneous material. SAR-GPR is a stepped frequency radar system, whose RF component is a newly developed compact vector network analyzers. The size of the system is 30cm x 30cm x 30 cm, composed from six Vivaldi antennas and three vector network analyzers. The weight of the system is 17 kg, and it can be mounted on a robotic arm on a small unmanned vehicle. The field test of this system was carried out in March 2005 in Japan.

Development of Three-Dimensional Gamma-ray Camera (방사선원 3차원 위치탐지를 위한 방사선 영상장치 개발)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Park, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.486-492
    • /
    • 2015
  • Radiation source imaging system is essential for protecting of radiation leakage accidents and minimizing damages from the radioactive materials, and is expected to play an important role in the nuclear plant decommissioning area. In this study, the stereoscopic camera principle was applied to develop a new radiation imaging device technology that can extract the radiation three-dimensional position information. This radiation three-dimensional imaging device (K3-RIS) was designed as a compact structure consisting of a radiation sensor, a CCD camera, and a pan-tilt only. It features the acquisition of stereoscopic radiation images by position change control, high-resolution detection by continuous scan mode control, and stereoscopic image signal processing. The performance analysis test of K3-RIS was conducted for a gamma-ray source(Cs-137) in radiation calibration facility. The test result showed that a performance error with less than 3% regardless of distances of the objects.

Color accuracy of imaging using color filters

  • Boher, P.;Leroux, T.;Patton, V. Collomb;Bignon, T.
    • Journal of Information Display
    • /
    • v.13 no.1
    • /
    • pp.7-16
    • /
    • 2012
  • In this paper, the problem concerning the color accuracy of imaging systems using color filters is examined. It is shown that the only solution to the problem is to build systems with the spectral response matching the CIE curves as closely as possible. If the spectral response does not closely match the CIE curves, it was demonstrated that calibration cannot solve the problem and will result in very unstable colorimeters. A practical solution that uses telecentric lenses on the sensor side in addition to dedicated color filters for each CCD detector is presented. For systems that closely match the CIE curves, an innovative method of improving the color accuracy based on the precise measurement of the spectral response is presented. The small discrepancies in the spectral response with regard to the CIE curves are corrected in different ways during the measurements. Finally, it is shown that the tristimulus calibration that is used for display measurement is very unstable for systems without CIE matching and is much more stable with systems that closely match the CIE curves.

Optical Setup for Full-Field Imaging Test of MATS Limb Telescope

  • Lee, Sunwoo;Hammar, Arvid;Park, Woojin;Chang, Seunghyuk;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.68.3-68.3
    • /
    • 2018
  • The MATS (Mesosphere Airglow / Aerosol Tomography Spectroscopy) satellite is a Swedish scientific microsatellite which Kyung Hee University participates in developing. The limb telescope of the MATS satellite is designed with linear astigmatism-free off axis optical configuration which allows wide field of view ($5.67^{\circ}{\times}0.91^{\circ}$). Here we present the full-field optical performance test setup that consists of a point source, a collimator, the limb telescope and a CCD (Charged Coupled Device). The incidence angle of the collimator was carefully controlled by the rotary stage under the limb telescope. The imaging tests represent expected results without dominant aberrations.

  • PDF

A Study of Image Target Detection and Tracking for Robust Tracking in an Occluded Environment (표적의 부분가림이 존재하는 환경에서 견실한 추적을 위한 영상 표적 탐지, 추적 알고리듬 연구)

  • Kim, Yong;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.982-990
    • /
    • 2010
  • In a target tracking system using image information from a CCD (Charged Couple Device) or an IIR (Imaging Infra-red) sensor, occluded targets can result in track losses. If the target is occlued by background objects such as buildings or trees, probability of track existence will be reduced sharply and track will be terminated due to track maintenance algorithms. This paper proposes data association algorithm based on target existence for the robust tracking performance. we suggest the HPDA (Highest Probability Data Association) algorithm based on target existence and the tracking performance is compared with the established method based on target perceivability. Image tracking simulation that utilizes virtual 3D images and real IR images is employed to evaluate the robustness of the proposed tracking algorithm.

AN OPTICAL FIBER FEED LITTROW-MOUNTED SPECTROMETER (광섬유 피드 리트로마운트형 분광계)

  • Bae, J.H.;Song, J.W.;Yoon, T.S.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.3
    • /
    • pp.87-93
    • /
    • 2012
  • A low-dispersion fiber feed Littrow-mounted grating spectrometer for education was designed and fabricated. The dispersion element is a reflective type blazed grating Edmundoptics NT 46-075 (spatial frequency 600 lines/mm, dimension $30mm{\times}30mm$, blazed angle 8.6 degree). The optical fiber coupler module for optical guiding from telescope to spectrometer is composed of a multi-mode FC connector - FC connector optical fiber patch cord (core/cladding diameter $50{\mu}m/125{\mu}m$) and two 1.25" throw-tube couplers. The lens for collimating and imaging is a general purpose focal length 50 mm camera lens (f/1.8). The device for optical path control is a rectangular prism (size $25mm{\times}25mm$). The imaging camera sensor is a Meade DSI Pro 2 CCD sensor (black and white, $752{\times}582$ pixels and pixel size $8.3{\mu}m{\times}8.6{\mu}m$). Softwares for data logging and analysis consist of Meade Autostar Suite, NIH imagej and Vernier Logger Pro 3. The wavelength coverage range of the spectrometer is 205 nm at central wavelength 550 nm. The wavelength resolution is 1.7 nm.

Survey of Electro-Optical Infrared Sensor for UAV

  • Jang, Seung-Won;Kim, Joong-Wook
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.124-134
    • /
    • 2008
  • The rising demand for the high efficiency and high covertness in UAV motivates the miniature design of the high performing mission sensors, or payloads. One of the promising payload sensors, EO/IR sensor has evolved satisfying its demands and became the main stand-alone mission sensor for 200kg-range UAV. One aspect in development of EO/IR sensor concerns lack of specification criterions to represent its performance. Even though the high demand and competition among each manufacturer caused EO/IR features subject to rapid change collateral to new technology, the datasheets maintained the conventional outdated formats which leave some of the major components in ambiguity. Making comparisons or predicting actual performance with such datasheets is hardly worthwhile; yet, they could be important reference guide for the potential customers what to expect for the upcoming EO/IR. According to UAS Roadmap 2007-2032 published by DoD, one of the main potential customers as well as a main investor of EO/IR technology, EO/IR is expected to play key roll in solving urgent problems, such as see and avoid system. This paper will examine the recent representative EO/IR specialized in UAS missions through datasheets to find out current trend and eventually extrapolate the possible future trend.

  • PDF

The Near-Infrared Imaging Spectroscopy to Visualize the Distribution of Sugar Content in the Flesh of a Melon

  • Tsuta, Mizuki;Sugiyama, Junichi;Sagara, Yasuyuki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1526-1526
    • /
    • 2001
  • To improve the accuracy of sweetness sensor in automated sorting operations, it is necessary to clarify unevenness of the sugar content distribution within fruits. And it is expected that the technique to evaluate the content distribution in fruits contribute to the development of the near-infrared (NIR) imaging spectroscopy. Sugiyama (1999) had succeeded to visualize the distribution of the sugar content on the surface of a half-cut green fresh melon. However, this method cannot be applied to red flesh melons because it depends on information of the absorption band of chlorophyll (676 nm), which is affected by the color of the fresh. The objective of this study was to develop the universal visualization method depends on the absorption band of sugar, which can be applied to various kinds of melons and other fruits. The relationship between the sugar contents and absorption spectra of both green and red fresh melons were investigated by using a NIR spectrometer to determine the absorption band of sugar. The combination of 2$\^$nd/ derivative absorbances at 902 nm and 874 nm was highly correlated with the sugar contents. The wavelength of 902 nm is attributed to the absorption band of sugar. A cooled charge-coupled device (CCD) imaging camera which has 16 bit (65536 steps) A/D resolution was equipped with rotating band-pass filter wheel and used to capture the spectral absorption images of the flesh of a vertically half-cut red fresh melon. The advantage of the high A/D resolution in this research is that each pixel of the CCD is expected to function as a detector of the NIR spectrometer for quantitative analysis. Images at 846 nm, 874 nm, 902 nm and 930 nm were acquired using this CCD camera. Then the 2$\^$nd/ derivative absorbances at 902 nm and 874 nm at each pixel were calculated using these four images. On the other hand, parts of the same melon were extracted for capturing the images and squeezed for the measurement of sugar content. Then the calibration curve between the combination of 2$\^$nd/ derivative absorbances at 902 nm and 874 nm and sugar content was developed. The calibration method based on NIR spectroscopy techniques was applied to each pixel of the images to convert the 2$\^$nd/ derivative absorbances into the Brix sugar content. Mapping the sugar content value of each pixel with linear color scale, the distribution of the sugar content was visualized. As a result of the visualization, it was quantitatively confirmed that the Brix sugar contents are low at the near of the skin and become higher towards the seeds. This result suggests that the visualization technique by the NIR imaging spectroscopy could become a new useful method fer quality evaluation of melons.

  • PDF

RFM for High Resolution Satellite Sensor Modeling (RFM을 이용한 고해상도 인공위성 센서모델링)

  • 조우석;이동구
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.6
    • /
    • pp.337-344
    • /
    • 2002
  • In general, in order to obtain position information from satellite images, satellite sensor model which represents the geometric relationship between sensor and targeted area should be established in the first place. However, it is not simple for modelling pushbroom satellite sensor due to the image capturing process. In recent development of new generation imaging sensors, a generic sensor model, which is applicable to all types of sensors such as frame, pushbroom, whiskbroom, and SAR is in great need to the remote sensing and photogrammetry community. In this paper, the RFM as sensor model was implemented with KOMPSAT EOC and SPOT satellite images and analyzed in cases where the number and distribution of ground control points were varied. The test results of RFM were presented and compared with those of Direct Linear Transformation(DLT).

Measurement of the Photon Fluence for the Evaluation of Photon Detection Efficiency of Photon Counting Sensor (광계수형 센서의 포톤계수효율 평가를 위한 포톤플루엔스 측정)

  • Park, Ji-Koon;Heo, Ye-Ji;Kim, Kyo-Tae;Noh, Si-Cheol;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Recently, the various digital X-ray imaging devices using CCD and TFT LCD-based flat panel digital X-ray sensor are being used. In particular, a number of studies on photon counting sensor technique have been reported. In this study, the incident X-rays fluence on the photon counting sensor material was measured to estimate photon detection efficiency which is the quantitative performance evaluation factor of photon counting sensor. The result of measuring the photon fluence by using RQA-M2 Radiation beam quality of IEC 61223-1-2 recommendations, the incident photon fluence could be defined as about $4 photons/(0.01mm)^2{\cdot}{\mu}Gy$ within $10{\mu}m$ pin-hole area, and about $50photons/(0.03mm)^2{\cdot}{\mu}Gy$ within $30{\mu}m$ pin-hole area, and about $698photons/(0.1mm)^2{\cdot}{\mu}Gy$ within $100{\mu}m$ pin-hole area. Consequently, with the previously setup of the incident fluence, the measuring of actual photon counting efficiency by observing the output waveform of the photon counting sensor material was considered possible.