• Title/Summary/Keyword: CCAAT/enhancer binding proteins

Search Result 64, Processing Time 0.03 seconds

Anti-adipogenic Effect of Chlorogenic Acid in 3T3-L1 Adipocytes

  • Park, Se-Eun;Choi, Jun-Hui;Lee, Hyo-Jeong;Seo, Kyoungsun;Kim, Seung
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.80-80
    • /
    • 2018
  • Chlorogenic acid is a phenolic compound found in Cudrania tricuspidata fruits. In the present study, the effect of chlorogenic acid on the inhibition of adipogenesis in 3T3-L1 adipocytes was investigated. Cells were stained with Oil red O reagent to detect lipid droplets in adipocytes. The 3T3-L1 cells were lysed and measured for intracellular triglyceride and adipokine by ELISA kit. The protein expression of adipogenesis-related gene was evaluated by Western blot analysis. Chlorogenic suppressed lipid droplet and intracellular triglyceride accumulation in a concentration manner and also decreased secretion of adipokines such as leptin and adiponectin, compared with fully differentiated adipocytes. Treatment of 3T3-L1 cells with chlorogenic acid reduced the protein levels of peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and, CCAAT/enhancer binding proteins alpha ($C/EBP{\alpha}$). This indicates that chlrogenic acid was effective as an anti-obesity agent by repressing the differentiation of 3T3-L1 into adipocytes and inhibiting triglyceridef formation in adipocyte and that it exerts its role mainly through the significant down-regulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$.

  • PDF

Anti-adipocyte differentiation activity and flavonoid content determination by HPLC/UV analysis of tree sprouts

  • Kim, Juree;Jang, Taewon;Kim, Ji Hyun;Shin, Hanna;Park, Jaeho;Lee, Sanghyun
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.269-275
    • /
    • 2021
  • The in vitro anti-obesity activity of 12 species of tree sprouts in differentiated 3T3-L1 cells and the mechanisms underlying their activity were evaluated. (+)-Catechin and quercetin concentrations in the sprouts were analyzed by HPLC/UV at 270 and 254 nm, respectively. Euonymus alatus (EAT) and Fraxinus mandschuria (FMS) extracts at doses of 50 and 100 ㎍/mL inhibited the accumulation of lipid droplets in differentiated 3T3-L1 cells. Moreover, EAT and FMS downregulated the expression of the CCAAT/enhancer-binding protein-α, adipogenesis-related proteins peroxisome proliferator-activated receptor-γ, and adipocyte P-2α in differentiated 3T3-L1 cells. Tree sprouts with an abundant flavonoid content exerted the highest anti-obesity activity. Concentrations of total flavonoids were the highest in FMS (24.281 mg/g DW) sprouts. These findings could be used to develop health-promoting functional foods or supplements derived from tree sprouts.

The Study on anti-obesity of Myrrh ethanol extract (몰약(沒藥) 에탄올 추출물의 항비만에 관한 연구)

  • Baek, Seon-Jae;Kim, Dong-Hee
    • The Korea Journal of Herbology
    • /
    • v.31 no.4
    • /
    • pp.11-18
    • /
    • 2016
  • Objectives : The objective of this study was to investigate the effect of Myrrh 80% ethanol extract on adipocyte differentiation and adipogenesis in 3T3-L1 cell.Methods : Myrrh was prepared by extracting with 80% ethanol. Cell viability was assessed by MTT assay using 3T3-L1 cells. Anti-obesity activity was measured in lipid droplets and triglyceride (TG) accumulation in 3T3-L1 cells. We also analyzed the expression of C/EBPβ, C/EBPα, PPARγ, SREBP1c, and aP2 by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, we observed the production of fatty acid, acetyl-CoA carboxylase and Oil-red O stainingResults : No cytotoxicity from Myrrh 80% ethanol extracts was observed at the concentration of 1, 10, 100 (㎍/㎖) in 3T3-L1 cells. Treatment with Myrrh significantly suppressed the terminal differentiation of 3T3-L1 in a dose-dependent manner, as confirmed by a decrease in triglyceride and Fatty acid and Acetyl-CoA carboxylase. Also, Myrrh exhibited potential adipogenesis inhibition and downregulated the expression of pro-adipogenic transcription factors, such as sterol regulatory element binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα) and C/EBPβ, and adipocyte expressed genes, such as adipocyte fatty acid binding protein (aP2) and Fas. In addition, lipid accumulation determined by Oil-red O staining showed that Myrrh extract had inhibitory effects on lipid accumulation in 3T3-L1 cells.Conclusions : These results suggest that Myrrh suppresses obesity factors in 3T3-L1 cells. Myrrh may be a useful medical herbs for attenuating metabolic diseases such as obesity.

Red pepper seed water extract inhibits preadipocyte differentiation and induces mature adipocyte apoptosis in 3T3-L1 cells

  • Kim, Hwa-Jin;You, Mi-Kyoung;Lee, Young-Hyun;Kim, Hyun-Jung;Adhikari, Deepak;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.12 no.6
    • /
    • pp.494-502
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Reducing the number of adipocytes by inducing apoptosis of mature adipocytes as well as suppressing differentiation of preadipocytes plays an important role in preventing obesity. This study examines the anti-adipogenic and pro-apoptotic effect of red pepper seed water extract (RPS) prepared at $4^{\circ}C$ (RPS4) in 3T3-L1 cells. MATERIALS/METHODS: Effect of RPS4 or its fractions on lipid accumulation was determined in 3T3-L1 cells using oil red O (ORO) staining. The expressions of AMP-activated protein kinase (AMPK) and adipogenic associated proteins [peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR-{\gamma}$), CCAAT/enhancer-binding proteins ${\alpha}$ (C/EBP ${\alpha}$), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC)] were measured in 3T3-L1 cells treated with RPS4. Apoptosis and the expression of Akt and Bcl-2 family proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad), Bcl-2 like protein 4 (Bax), Bal-2 homologous antagonist/killer (Bak)] were measured in mature 3T3-L1 cells treated with RPS4. RESULTS: Treatment of RPS4 ($0-75{\mu}g/mL$) or its fractions ($0-50{\mu}g/mL$) for 24 h did not have an apparent cytotoxicity on pre and mature 3T3-L1 cells. RPS4 significantly suppressed differentiation and cellular lipid accumulation by increasing the phosphorylation of AMPK and reducing the expression of $PPAR-{\gamma}$, C/EBP ${\alpha}$, SREBP-1c, FAS, and ACC. In addition, all fractions except ethyl acetate fraction significantly suppressed cellular lipid accumulation. RPS4 induced the apoptosis of mature adipocytes by hypophosphorylating Akt, increasing the expression of the pro-apoptotic proteins, Bak, Bax, and Bad, and reducing the expression of the anti-apoptotic proteins, Bcl-2 and p-Bad. CONCLUSIONS: These finding suggest that RPS4 can reduce the numbers as well as the size of adipocytes and might useful for preventing and treating obesity.

Inhibitory Effects of Bojungchiseub-tang on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes (보중치습탕이 3T3-L1 지방전구세포의 분화 및 지방생성 억제에 미치는 영향)

  • Lee, Soo Jung;Kim, Won Il;Kang, Kyung Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.288-295
    • /
    • 2014
  • Bojungchiseub-tang (BJCST) has been used in symptoms and signs of edema, dampness-phlegm, kidney failure, and so on. BJCST is also expected to have strong anti-obesity activities. However, little is known about the mechanisms of its inhibitory effects on adipocyte differentiation and adipogenesis. In the present study, we examined the effects and mechanism of BJCST on transcription factors and adipogenic genes of 3T3-L1 preadipocytes to understand its inhibitory effects on adipocyte differentiation and adipogenesis. Our results showed that BJCST significantly inhibited differentiation and adipogenesis of 3T3-L1 preadipocytes in a dose-dependent manner. To elucidate the mechanism of the effects of BJCST on lowering lipid content in 3T3-L1 adipocytes, we examined whether BJCST modulate the expressions of transcription factors to induce adipogenesis and adipogenic genes related to regulate accumulation of lipids. As a result, the expression of steroid regulatory element-binding protein (SREBP)1, cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, $C/EBP{\delta}$, and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) genes, which induce the adipose differentiation, liver X receptor $(LXR){\alpha}$ and fatty acid synthase (FAS) genes, which induce lipogenesis and adipose-specific aP2, Adipsin, lipoprotein lipase (LPL), CD36, TGF-${\beta}$, leptin and adiponectin genes, which compose fat formation were decreased. BJCST also reduced the expression of acyl CoA oxidase (ACO) and uncoupling protein (UCP) genes related to lipid oxidation. In conclusion, BJCST could regulate transcript factor related to induction of adipose differentiation and inhibited the accumulation of lipids and expression of adipogenic genes.

Ethanol Extract of Hippophae Rhamnoides L. Leaves Inhibits Adipogenesis through AMP-activated protein kinase (AMPK) Activation in 3T3-L1 Preadipocytes (비타민나무 잎 에탄올추출물의 AMPK 활성화를 통한 3T3-L1 지방전구세포의 adipogenesis 억제효과)

  • Jeong, Hyeon Ju;Park, Ju Hee;Kim, Myong-Jo
    • Korean Journal of Plant Resources
    • /
    • v.28 no.5
    • /
    • pp.582-590
    • /
    • 2015
  • In the present study, we investigated the effect of 70% EtOH extract from Hippophae Rhamnoides L. leaves (HRL) on the anti-obesity effect in 3T3-L1 cells. The effects of HRL on lipid accumulation in 3T3-L1 cells were examined using Oil Red O staining. In addition, we examined the gene expression levels by using RT-PCR and western blot. The results of this analysis showed that 100 ㎍/㎖ HRL significantly increased the inhibition of lipid accumulation by 82.25%; significantly decreased the mRNA expression of sterol regulatory element binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and fatty acid synthase (FAS) in 3T3-L1 cells as well as the stimulated protein expression of AMP-activated protein kinase (AMPK); and suppressed the expression level of PPARγ. These results suggest that HRL can prevent adipogenesis through activation of AMPKα and inhibition of adipogenesis transcription factors.

Anti-obesity effects of Tenebrio molitor larvae powder in high-fat diet-induced obese mice

  • Park, Bo Mi;Lim, Hyung Ju;Lee, Bong Joo
    • Journal of Nutrition and Health
    • /
    • v.54 no.4
    • /
    • pp.342-354
    • /
    • 2021
  • Purpose: Obesity is a serious public health issue for the modern society and is considered a chronic health hazard. There are many surgical and pharmacological approaches to treat obesity. However, various potentially hazardous side effects remain the biggest challenge. Therefore, diets based on foods derived from natural products have gained increasing attention compared to anti-obesity drugs. Recently, research on edible insects as a food source has been a topic of considerable interest in the scientific communities. This study examined the anti-obesity effects of ingesting an edible insect by feeding a high-fat diet (HFD)-induced obese mouse models with a diet containing Tenebrio molitor larvae powder (TMLP). Methods: Six-week-old female C57BL/6J mice were divided into 4 groups according to treatment: 100% normal diet (ND), 100% HFD (HFD), HFD 99% + TMLP 1% (TMLP), and HFD 97% + TMLP 3% (TMLP 3%). TMLP was added to the HFD for 6 weeks for the latter two groups. Results: Compared to the HFD group, mice in the TMLP group showed weight loss, and micro-computed tomographic imaging revealed that the volume of the adipose tissue in the abdominal area also showed significant reduction. After an autopsy, the fat weight was found to be significantly reduced in the TMLP group compared to the HFD group. In addition, the degree of fat cell deposition in the liver tissue and the size of the adipocytes significantly decreased in the TMLP group. Reverse transcription polymerase chain reaction analysis for the mRNA expression of adipogenesis-related genes namely CCAAT-enhancer-binding proteins (C/EBP-β, C/EBP-δ), and fatty acid-binding protein 4 (FABP4) showed that the expression levels of these genes were significantly reduced in the TMLP group compared to the HFD group. Serum leptin level also decreased significantly in the TMLP group in the comparison with the HFD group. In addition, total cholesterol, triglyceride, and glucose levels in mouse serum also decreased in the TMLP group. Conclusion: Taken together, our results showed that TMLP effectively inhibited adipocyte growth and reduced body weight in obese mice.

Inhibition of Lipase Activity and Preadipocyte Differentiation in 3T3-L1 Cells Treated with Sargassum horneri Extract (괭생이모자반 추출물의 리파아제 저해 활성 및 3T3-L1 지방전구세포 분화억제 효과)

  • Hong, Ji Woo;Park, Ha Young;Park, Jae Hyun;Kim, So Hee;Kim, Han A;Kim, Jin-Woo
    • Ocean and Polar Research
    • /
    • v.44 no.1
    • /
    • pp.61-67
    • /
    • 2022
  • In this study, in order to evaluate the anti-obesity effect of sargassum horneri extract, the effects of the extract on lipase activity and preadipocyte differentiation in 3T3-L1 cells were investigated. S. horneri extract between 0.0 and 1.0 mg/mL showed no cytotoxicity and inhibited lipase activity by 68.1%. When S. horneri extract was utilized at levels of 0.25, 0.5, and 1.0 mg/mL in 3T3-L1 cells, preadipocytes differentiation decreased by 11.4, 19.7, and 25.6%, respectively, showing anti-obesity effects. In addition, after treatment with 1.0 mg/mL S. horneri extract, the mRNA expression levels of sterol regulatory element binding proteins-1c (SREBP-1c), peroxisome proliferator activated receptor-γ (PPAR-γ), CCAAT enhancer binding protein-α (CEBP-α), fatty acid synthase (FAS), and stearoyl-CoA desaturase1 (SCD1) in 3T3-L1 cells were significantly decreased (p < 0.05) by 65.2, 54.9, 50.0, 33.8, and 33.8% respectively. These results showed that S. horneri extract suppresses lipase activity and prophylactic preadipocyte differentiation in 3T3-L1, and thus can be used as an anti-obesity agent in functional foods and medicines.

Brefeldin A-induced Endoplasmic Reticulum Stress Leads to Different CHOP Expression in Primary Astrocyte Cells and C6 Glioma Cells (Astrocyte 세포와 C6 glioma 세포에서 ER stress 유도 물질 brefeldin A에 의한 CHOP 단백질의 발현 차이)

  • Park, Eun Jung;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.490-495
    • /
    • 2016
  • Brefeldin A (BFA), a lactone antibiotic isolated from the fungus Eupenicillium brefeldianum, inhibits the transport of secreted and membrane proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. BFA disrupts Golgi function, the accumulation of unfolded proteins in ER, and the induction of ER stress. Prolonged ER stress induces apoptosis at least in part through the transcription factor C/EBP (CCAAT/enhancer binding protein) homologous protein (CHOP),which is activated by the unfolded protein response (UPR). In this paper, we demonstrate that BFA-induced endoplasmic reticulum stress leads to different CHOP expression in primary astrocyte cells and C6 glioma cells. BFA induced lower CHOP expression levels in primary astrocyte cells than in C6 glioma cells; however, other ER stress inducers (thapsigargin and tunicamycin) resulted in similar expression patterns in these two cell types. Interestingly, the three different ER stress inducers (BFA, thapsigargin, and tunicamycin) induced similar levels of CHOP mRNA expression in primary astrocyte cells. The ubiquitin-proteasome inhibitor MG132 also markedly up-regulated the BFA-mediated CHOP protein expression in primary astrocyte cells. BFA also induced higher proteasome activity in primary astrocyte cells than in C6 glioma cells. Taken together, our results suggest that higher proteasomal activity might down-regulate BFA-induced CHOP expression in primary astrocyte cells.

The Effects of Dai-saiko-to (Da-Chai-Hu-Tang) on 3T3-L1 Preadipocytes and High-Fat Diet-Induced Obese Mice (대시호탕(大柴胡湯)이 3T3-L1 지방전구세포와 고지방식이 유도 비만쥐에 미치는 영향)

  • Min, Deul Le;Park, Eun Jung
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • Objectives This experimental study was designed to investigate the effects of Dai-saiko-to (DSH) on differentiation of 3T3-L1 preadipocytes and body weight, serum lipid levels in high-fat diet-induced obese mice. Materials and Methods Cells were incubated with DSH at an indicated concentration (0.01-1 mg/ml) for 24h, then the growth rate was assessed by MTS assay. 3T3-L1 preadipocytes were incubated in DMEM for 2 days with the indicated concentrations of DSH. On Day 6, the cells were fixed and the cellular lipid contents were assessed by Oil-Red-O staining. The expression of peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) and cytidine-cytidine-adenosine-adenosine-thymine (CCAAT)/enhancer-binding proteins ${\alpha}$ ($C/EBP{\alpha}$) as adipocyte-specific proteins were determined by real time RT-PCR and western blotting. Four-weeks old mice (wild-type C57BL/6) were used for all experiments. Body weight gain and serum lipid levels were measured in the obesity-induced mice. Results DSH did not show toxicity even at the concentration of 1 mg/ml and DSH significantly inhibited the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner. Also, DSH significantly reduced the expressions of $PPAR{\gamma}$ and $C/EBP{\alpha}$ in a dose-dependent manner. Furthermore, DSH significantly reduced body weight gain, serum glucose, total cholesterol and LDL-cholesterol contents in obesity-induced mice. Conclusions These results demonstrated that DSH inhibited 3T3-L1 preadipocyte differentiations and high-fat diet-induced obesity in mice.