• Title/Summary/Keyword: CBN cutting Tool

Search Result 51, Processing Time 0.025 seconds

The Study on Interrupted Cutting Tool Life of Cermet and CBN in Ductile Cast Iron(FCD500) (구상흑연주철(FCD500)의 단속가공에서 서멧과 CBN의 공구수명에 관한 연구)

  • Oh, Sung-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.8-12
    • /
    • 2012
  • Recently, a wide range of industrial production area has a competitive advantage through cost reduction. Moreover with the development of industrial technology, base material and cutting tool help the machining technology. But most of the machining enterprises have not hold the R&D facilities and human resources. This mainly disturbs the industrial development and th increase of production efficiency. Especially in the interrupted machining process, it showed different behavior with continuous machining process. So it needs to research and develop the tool life and tool wear mechanism analysis.

An Experimental Study on Cutting Characteristic of Ceramics (세라믹스의 절삭거동에 관한 실험적 연구)

  • 이길우;김순태
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.5
    • /
    • pp.420-426
    • /
    • 1993
  • The machinability of ceramics has been experimentally studied. The experiments were conducted on alumina cernmics of various purity, quartz, and cordierite using the sintered diamond tools and CBN tools. Tool wasre, surface roughness, and cutting resistence were measured and analysed. It was found that the workpieces could be machined with the diamond and CBN tools, but the sintered diamond tools were more efficient for the machining of the high strength ceramics. The machining of alumina ceramics with sintered diamond tools showed that (1) wet machining prolonged tool life comparing with dry machining, (2) workpiecewith higher purity had better surface roughness, (3) severe cutting conditions led to the chipping and fracture of tool and increase of the surface roughness and cutting resistance, (4) 20~40m/min of cutting speed, 0.01~0.02mm/rev of feed, and 0.1~0.2mm of cutting depth are suggested as proper cutting conditions for the high strength ceramics.

  • PDF

Wear Characteristics of CBN Tools on Hard Turning of AISI 4140 (고경도강(AISI 4140, HrC60)의 하드터닝에서 가공속도 및 윤활조건 변경에 따른 CBN 공구의 마모 특성)

  • Yang, Gi-Dong;Park, Kyung-Hee;Lee, Myung-Gyu;Lee, Dong Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.799-804
    • /
    • 2014
  • Hard turning is a machining process for hardened materials with high surface quality so that grinding process can be eliminated. Therefore, the hard turning is capable of reducing machining time and improving productivity. In this study, hardened AISI4140 (high-carbon chromium steel) that has excellent yield strength, toughness and wear resistance was finish turned using CBN tools. Wear characteristics of CBN tool was analyzed in dry and MQL mixed with nano-particle (Nano-MQL). The dominant fracture mechanism of CBN tool is diffusion and dissolution wear on the rake surface resulting in thinner cutting edge. Abrasive wear by hard inclusion in AISI4140 was dominant on the flank surface. Nano-MQL reduced tool wear comparing with the dry machining but chip evacuation should be considered. A cryogenically treated tool showed promising result in tool wear.

Machinability of ceramic and WC-Co green compacts (세라믹 및 초경합금 성형체의 피절삭성)

  • Lee, Jae-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1520-1530
    • /
    • 1997
  • Machining pressed compacts of ceramic and WC-Co materials can be the most cost effective way of forming the bodies prior to sintering when the required number of pieces is small. In this study, in order to clarify the machinability for turning, the $Si_3N_4$ and the WC-Co green compacts unsintered were machined under different cutting conditions with various tools. Absorbing chips by vacuum hose decreases tool wear. The tool wear becomes larger in the order of the ceramic, CBN and cemented carbide tools in machining the $Si_3N_4$ green compacts. In machining the WC-Co green compacts, the tool wear becomes larger in the order of the ceramic, cemented carbide and CBN tools. The land of cutting edge does not affect tool wear. When machining with cemented carbide tool, the tool wear i equal cutting length is nearly identical in spite of the increase of cutting spee, and the roughness of machined surface was the best in the cutting speed of 90 m/min. The tool wear decreases with the increase of rake angle and relief angle and with the decrease of nose radius. The machined surfaces become worse with the increase of feed rate and depth of cut, and with the decrease of rake angle and relief angle. The tool wear is not affected by the feed and depth of cut.

Machinability of CBN Tools in Interrupted Milling Process of Die & Mold Steels with High Hardness (고경도 금형강 단속 밀링절삭에 대한 CBN 공구의 가공 성능)

  • Song, Jun-Hee;Mun, Sang-Don
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.651-659
    • /
    • 2010
  • When high-speed interrupted cutting is carried out for die and mold steels with high hardness, CBN tools manifested a significantly longer wear life than carbide, ceramic, or cermet tools in an experiment of face milling characteristics. In addition, it was also found that they secured a stable surface roughness within a range of 1.6 S~6.3 S, an acceptable range for precision machining for polished machining parts. And it makes them acceptable in the precision machining field, except in industries where very high machining accuracy is required. In the high hardness interrupted cutting, it was advantageous to perform a negaland treatment and a honning treatment on the tools' cutting edge to extend tool life and surface roughness. Also, severe crater development was found on the sloped face in CBN tools following high-speed machining. This caused the cutting edge to be weakened and damaged, and ultimately resulted in a shorter tool life. Finally, as a result of EDX mapping inspection, Cr component was detected evenly on the entire crater wear area, which can be included only in STD 11.

A Study on the Tool Wear and Prediction of CBN, Poly Crystal and Single Crystal Diamond Tools in Cutting of Nickel (니켈절삭시 CBN, 소결 및 단결정 다이아몬드 공구의 마멸과 예측에 관한 연구)

  • 성기석;김정두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.120-130
    • /
    • 1993
  • Generally, the machinability of materials that have a good mechanical properties is poor. For materials having a high strength, high toughness, high strength in high temperature and wear resistance, it is difficult to remove a chip from work materials. These properties are well shown in a Nickel, so this metal is used in machine materials, semi-conductor industry, metal mold and optical fields etc. But it is limitted in use because of high cost and poor machinability. In this study, the cutting of pure Nickel was conducted to examine wear of CBN, poly crystal diamond (PCD) and single crystal diamond (SCD) tools. From the result, the CBN tool is superior to poly crystal diamond tools or single crystal diamond tools in terms of tool wear and tool wear is predictable from experimental data base.

A Study on the Characteristics of Cutting for A16061-T6 (A16061-T6재의 절삭가공 특성에 관한 연구)

  • 강상도;채왕석;김경우;김우순;김동현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.202-208
    • /
    • 2003
  • This study carried out a cutting experiment on Duralumin A16061-76, which is light but strong and highly anticorrosive, so recently popular as a lightweight material, by changing cutting conditions and alternating 4 insert tips, and examined the effect of each insert tip on cutting force at certain cutting conditions, the measurements of the coarseness of processed surfaces roughness, and the chip workability. The 1311owing conclusions were drawn from the results. Cutting force for cutting tool is when insert tips were alternated at each cutting condition, the cutting force of cutting tools was highest then CBN tools were use(1 next by Ceramic tools, Cermet tools, and WC tools. Therefore, WC tools are considered most suitable for cutting Duralumin A16061-T6. Surface roughness as for the coarseness of surfaces according to insert tips applied to Duralumin A16061-T6 under the cutting condition of depth of cut below 1mm, feed rate below 0.24mm/rev and cutting speed over 100m/min the coarseness of material surface roghness appeared to be finest when WC tools were used, next by Ceramic tools, Cermet tools, and CBN tools.

  • PDF

Analysis of Thermal Displacement of PCBN Tool Holder for Machining Accuracy in Hard Turning (하드터닝에서 CBN 공구홀더의 열변형이 가공정밀도에 미치는 영향)

  • 노승국;이찬홍;하재용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.363-366
    • /
    • 2003
  • The hard turning is a turning operation performed in high strength alloy steels (HRC>30) in order to reach surface roughness close to those obtained in grinding. This is possible because of availability of improved tool materials (polycrystalline cubic boron nitride. PCBN), ad more rigid machine tools. According to many previous work of hard turning mechanism, the maximum temperature of cutting can be raised up to 100$0^{\circ}C$. As the heat generation rate is very high, the thermal displacement of tool holder cannot be negligible. Therefore, the aim of this paper is to analyze effects of high heat generation at CBN tool tip to the thermal displacement of a tool holder in hard turning and finally geometric accuracy. The thermal behavior of a CBN tool holder is investigated by numerical simulation and experiment, and the result shows thermal elongation of microns order is possible during hard turning process.

  • PDF

Machinability investigation of gray cast iron in turning with ceramics and CBN tools: Modeling and optimization using desirability function approach

  • Boutheyna Gasmi;Boutheyna Gasmi;Septi Boucherit;Salim Chihaoui;Tarek Mabrouki
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.119-137
    • /
    • 2023
  • The purpose of this research is to assess the performance of CBN and ceramic tools during the dry turning of gray cast iron EN GJL-350. During the turning operation, the variable machining parameters are cutting speed, feed rate, depth of cut and type of the cutting material. This contribution consists of two sections, the first one deals with the performance evaluation of four materials in terms of evolution of flank wear, surface roughness (2D and 3D) and cutting forces. The focus of the second section is on statistical analysis, followed by modeling and optimization. The experiments are conducted according to the Taguchi design L32 and based on ANOVA approach to quantify the impact of input factors on the output parameters, namely, the surface roughness (Ra), the cutting force (Fz), the cutting power (Pc), specific cutting energy (Ecs). The RSM method was used to create prediction models of several technical factors (Ra, Fz, Pc, Ecs and MRR). Subsequently, the desirability function approach was used to achieve a multi-objective optimization that encompasses the output parameters simultaneously. The aim is to obtain optimal cutting regimes, following several cases of optimization often encountered in industry. The results found show that the CBN tool is the most efficient cutting material compared to the three ceramics. The optimal combination for the first case where the importance is the same for the different outputs is Vc=660 m/min, f=0.116 mm/rev, ap=0.232 mm and the material CBN. The optimization results have been verified by carrying out confirmation tests.

A study on the surface integrity of machined surface layer in machining hardened STD11 steel (경화처리된 합금공구강의 절삭에서 가공 표면층의 표면성상에 관한 연구)

  • Noh, Sang-Lai;An, Sang-Ook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.153-160
    • /
    • 1994
  • In this study, residual stress and surface roughness were investigated experimentally to evaluate surface integrity on surface layer machined by CBN, ceramics and WC cutting tools. When machining difficult-to-cut material (hardened STD11 steel $H_{R}$C 60), residual stresses remaining in machined surface layer were mainly compressive. The increase of flank wear caused a shift of the compressive residual stress maximum to greater workpiece depths, but the changes did not penetrate the workpiece beneath a depth of 300 .mu. m. Surface roughness was influenced considerably by variations of the cutting speed and feed. In machining hard material, CBN and A1$_{2}$ $O_{3}$ ceramics cutting tool materials proved significantly superior to mixed ceramics A1$_{2}$ $O_{3}$-TiC and WC in evaluation of surface integrity.y.

  • PDF