• Title/Summary/Keyword: CATIA V5R20

Search Result 3, Processing Time 0.019 seconds

Development of A Software Tool for Automatic Trim Steel Design of Press Die Using CATIA API (CATIA API를 활용한 프레스금형 트림스틸 설계 자동화 S/W 모듈 개발)

  • Kim, Gang-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.72-77
    • /
    • 2017
  • This paper focuses on the development of a supporting S/W tool for the automated design of an automotive press trim die. To define the die design process based on automation, we analyze the press die design process of the current industry and group repetitive works in the 3D modeling process. The proposed system consists of two modules, namely the template models of the trim steel parts and UI function for their auto-positioning. Four kinds of template models are developed to adapt to various situations and the rules of the interaction formula which are used for checking and correcting the directions of the datum point, datum curve, datum plane are implemented to eliminate errors. The system was developed using CATIA Knowledgeware, CAA(CATIA SDK) and Visual C++, in order for it to function as a plug-in module of CATIA V5, which is one of the major 3D CAD systems in the manufacturing industry. The developed system was tested by applying it to various panels of current automobiles and the results showed that it reduces the time-cost by 74% compared to the traditional method.

A Study on Design Automation of Cooling Channels in Hot Form Press Die Based on CATIA CAD System (CATIA CAD 시스템 기반 핫폼금형의 냉각수로 설계 자동화에 관한 연구)

  • Kim, Gang-Yeon;Park, Si-Hwan;Kim, Sang-Kwon;Park, Doo-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.147-154
    • /
    • 2018
  • This paper focuses on the development of a support system that can rapidly generate the design data of a hot-form die with cooling channels, commonly known as hot stamping technology. We propose a new process for designing hot-form dies based on our (automated) system, whose main features are derived from the analysis of the design requirements and design process in the current industry. Our design support system consists of two modules, which allow for the generation of a 3D geometry model and its 2D drawings. The module for 3D modeling automation is implemented as a type of CATIA template model based on CATIA V5 Knowledgeware. This module automatically creates a 3D model of a hot-form die, including the cooling channels, that depends on the shape of the forming surface and the number of STEELs (subsets of die product) and cooling channels. It also allows for both the editing of the positions and orientations of the cooling channels and testing for the purpose of satisfying the constraints on the distance between the forming surface and cooling channels. Another module for the auto-generation of the 2D drawings is being developed as a plug-in using CAA (CATIA SDK) and Visual C++. Our system was evaluated using the S/W test based on a user defined scenario. As a result, it was shown that it can generate a 3D model of a hot form die and its 2D drawings with hole tables about 29 times faster than the conventional manual method without any design errors.

Efficient Numerical Analysis for Shape Design of Turbine Seal (효율적인 수치해석에 의한 터빈 시일의 형상설계)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.118-124
    • /
    • 2016
  • In this paper, the model to develop the forming process for turbine seal is suggested. And numerical approach for the shape design of the turbine seal is examined. Because of the thin thickness of the turbine seal, the seal is easily fractured in the manufacturing process. The main factors of the seal manufacturing consist of addendum angle and dedendum angle, fillet on the addendum face, number of the gear teeth, sheet initial location and gear initial location, rake and vertical clearance. The structure and shape of seal are modeled using the commercial 3D mechanical design program, CATIA(V5/R20). Also, rolling process to manufacture the turbine seal is analyzed using DEFORM$^{TM}$-3D(V11), commercial forming analysis software and runs under PC workstation. This study focused on the shape design of turbine seal. Through this research, the main factors to make the turbine seal for airplane turbine engine can be obtained. This study results are reflected to the shape design for turbine seal.