• Title/Summary/Keyword: CAT02

Search Result 37, Processing Time 0.032 seconds

A Quantitative Ultrastructural Study on the Effects of Ischemia and Reperfusion on the Rat and Cat Hearts (허혈 및 재관류가 흰쥐 및 고양이 심장에 미치는 영향에 관한 형태계측학적 연구)

  • Park, Young-Sik;Uhm, Chang-Sub;Suh, Young-Suk
    • Applied Microscopy
    • /
    • v.22 no.1
    • /
    • pp.42-54
    • /
    • 1992
  • To understand the structural changes of the myocardial myocytes and endothelial cells in ischemic and reperfused heart, and to elucidate their roles in those conditions, the authors observed cat and rat myocardium ultrastructurally and evaluated them with morphometric techniques. In cat, mild ischemia and moderate degree reperfusion injury was induced by ligation of the anterior interventricular branch of left coronary artery and reperfusion. In rat, severe ischemia and irreversible reperfusion iniury was made using in vitro Langendorff techniques. In normal cat myocytes, the volume densities of cytoplasm, myofibrils, mitochondria, sarcoplasmic reticulum and T tubules were $0.11{\pm}0.013,\;0.51{\pm}0.096,\;0.25{\pm}0.082,\;0.09{\pm}0.008,\;0.02{\pm}0.010$ (Mean${\pm}$S.D.) respectively, and the myofibril/mitochondria ratio was $2.33{\pm}1.379$. The numerical density and average volume of mitochondria were $0.76{\pm}0.210/{\mu}m^3$ and $0.33{\pm}0.057{\mu}m^3$ respectively. In normal cat endothelial cells, the volume densities of cytoplasm, cytoplasmic vesicles, tubular systems (including endoplasmic reticulum and Golgi apparatus) and mitochondria were $0.43{\pm}0.023,\;0.28{\pm}0.007,\;0.22{\pm}0.021,\;0.03{\pm}0.014$ respectively. The mean thickness of endothelial cells was $230{\pm}45.2{\mu}m$. The numerical density and average volume of cytoplasmic vesicles were $508{\pm}55.0/{\mu}m^3,\;578{\pm}104.8nm^3$ respectively. In cat myocytes which received mild ischemic injury, the volume densities of organelles were not changed significantly in ischemic and reperfusion states. In reperfusion group myocytes, the numerical density of mitochondria was decreased significantly and the average volume was increased significantly. In endothelial cells, the volume density of tubular system in ischemic group and the average volume of cytoplasmic vesicles in reperfusion group were increased significantly. In rat myocytes which received severe ischemic injury, the volume density and average volume of mitochondria were increased significantly, and the volume density of sarcoplasmic reticulum and numerical density of mitochondria were decreased significantly in both ischemic and reperfusion groups. In ischemic and reperfused endothelial cells, the volume density and numerical density of cytoplasmic vesicles, the volume density of cytoplasm were decreased significantly. The volume densities of tubular system were increased significantly in both ischemic and reperfused groups. The volume density of mitochondria in ischemic group and the average volume of cytoplasmic vesicles in reperfusion group showed significant increase. The authors, based on the above observations, conclude that the mitochondria of myocytes and the cytoplasmic vesicles of endothelia are the first group of targets in ischemic and reperfusion injury and in this respect, the degree of ischemic insult is not significant. The role of myocyte mitochondria in reperfusion injury may be insignificant, but endothelial cells may contribute actively to reperfusion injury.

  • PDF

Determination of the Kinetic Properties of Platy cod in D for the Inhibition of Pancreatic Lipase Using a 1, 2-Diglyceride- Based Colorimetric Assay

  • Zhao, Hai-Un;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.968-972
    • /
    • 2004
  • A 1, 2-diglyceride-based multi-step colorimetric assay to measure the pancreatic lipase activ-ity was applied for the determination of the kinetic profiles of the lipase inhibition with a slight modification and the validity verification. With this assay method, our study revealed that platy-codin D, one of major constituents of Platycodi Radix, inhibits the pancreatic lipase activity in a competitive type, with the value of $K_1$ being 0.18${\pm}$0.02 mM. In addition, PO has affected the val-ues of $K_{m}$, app/ and $K_{cat}$/$K_{m}$ in a dose-dependent manner. The results shed a meaningful light on how PO mediates lipid metabolism in the intestinal tracts. On the other hand, since the revised assay is sensitive, rapid, and does not affect the accuracy to the kinetic properties, it is applica-ble not only to evaluation of the kinetic properties of the pancreatic lipase, but also to high-throughput screening of pancreatic lipase activity.

Effect of Dietary Soybean Protein on Cerebral Infarction Size and Antioxidant Enzyme Activities in Rat Focal Brain Ischemia Model (쥐의 대두 단백질 섭취가 국소 뇌허혈/재관류 후 뇌경색 크기와 항산화효소 활성도에 미치는 영향)

  • Lee, Hee-Joo
    • Journal of Korean Biological Nursing Science
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • Purpose: The purpose of this study was to investigate the cerebral infarction size, antioxidant enzyme activities and lipid peroxidation changes after 6 weeks of dietary soybean protein intake in a rat focal brain ischemia model. Method: Weaning Sprague-Dawley rats were fed with either modified AIN-93G diet containing casein 20% (control), 20% soybean protein isolate-based diet (S20), or 40% of soybean protein isolate-based diet (S40) for 6 weeks. The animals were subject to right middle cerebral artery occlusion for 2 hr. After 24 hr of recirculation, the rats were sacrificed. Antioxidant enzymes activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and thiobarbituric acid reactive substance (TBARS) level in the right brain were also measured. Result: There were no significant differences in the right cortical infarction volume, TBARS level, SOD and CAT activities among the three groups whereas the GPx activities of the S20 group were significantly higher than those of the control group (p=.02). Conclusion: Our results suggest that 20% of soybean protein may have a modulating effect on GPx and possibly have some protective effect against oxidative stress although it may enough to decrease cerebral infarction volume in rat focal brain ischemia model.

  • PDF

Determination of the Kinetic Properties of Platycodin D for the Inhibition of Pancreatic Lipase Using a 1,2-Diglyceride-Based Colorimetric Assay

  • Zhao, Hai Lin;Kim , Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.27 no.10
    • /
    • pp.1048-1052
    • /
    • 2004
  • A 1, 2-diglyceride-based multi-step colorimetric assay to measure the pancreatic lipase activity was applied for the determination of the kinetic profiles of the lipase inhibition with a slight modification and the validity verification. With this assay method, our study revealed that platycodin D, one of major constituents of Platycodi Radix, inhibits the pancreatic lipase activity in a competitive type, with the value of $K_I$ being 0.18${\pm}$0.02 mM. In addition, PD has affected the values of $K_{m,app}\;and\;K_{cat}/K_m$ in a dose- dependent manner. The results shed a meaningful light on how PD mediates lipid metabolism in the intestinal tracts. On the other hand, since the revised assay is sensitive, rapid, and does not affect the accuracy to the kinetic properties, it is applicable not only to evaluation of the kinetic properties of the pancreatic lipase, but also to highthroughput screening of pancreatic lipase activity.

Functional Characterization of Pharmcogenetic Variants of Human Cytochrome P450 2C9 in Korean Populations

  • Cho, Myung-A;Yoon, Jihoon G.;Kim, Vitchan;Kim, Harim;Lee, Rowoon;Lee, Min Goo;Kim, Donghak
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.577-583
    • /
    • 2019
  • Human cytochrome P450 2C9 is a highly polymorphic enzyme that is required for drug and xenobiotic metabolism. Here, we studied eleven P450 2C9 genetic variants-including three novel variants F69S, L310V, and Q324X-that were clinically identified in Korean patients. P450 2C9 variant enzymes were expressed in Escherichia coli and their bicistronic membrane fractions were prepared The CO-binding spectra were obtained for nine enzyme variants, indicating P450 holoenzymes, but not for the M02 (L90P) variant. The M11 (Q324X) variant could not be expressed due to an early nonsense mutation. LC-MS/MS analysis was performed to measure the catalytic activities of the P450 2C9 variants, using diclofenac as a substrate. Steady-state kinetic analysis revealed that the catalytic efficiency of all nine P450 2C9 variants was lower than that of the wild type P450 2C9 enzyme. The M05 (R150L) and M06 (P279T) variants showed high $k_{cat}$ values; however, their $K_m$ values were also high. As the M01 (F69S), M03 (R124Q), M04 (R125H), M08 (I359L), M09 (I359T), and M10 (A477T) variants exhibited higher $K_m$ and lower $k_{cat}$ values than that of the wild type enzyme, their catalytic efficiency decreased by approximately 50-fold compared to the wild type enzyme. Furthermore, the novel variant M07 (L310V) showed lower $k_{cat}$ and $K_m$ values than the wild type enzyme, which resulted in its decreased (80%) catalytic efficiency. The X-ray crystal structure of P450 2C9 revealed the presence of mutations in the residues surrounding the substrate-binding cavity. Functional characterization of these genetic variants can help understand the pharmacogenetic outcomes.

Comparative and Interactive Biochemical Effects of Sub-Lethal Concentrations of Cadmium and Lead on Some Tissues of the African Catfish (Clarias gariepinus)

  • Elarabany, Naglaa;Bahnasawy, Mohammed
    • Toxicological Research
    • /
    • v.35 no.3
    • /
    • pp.249-255
    • /
    • 2019
  • Cadmium is a strong toxic heavy metal which presents in paints and liquid wastes and causes oxidative stress in fish. On the other hand, lead is widely used for different purposes, e.g. lead pipes, it targets vital organs such as liver and kidney causing biochemical alterations. The present study evaluates the effects of 60 days exposure to Cd and Pb either single or combined together in African catfish. Sixty-four fishes were divided into 3 groups and exposed to $CdCl_2$ (7.02 mg/L) or $PbCl_2$ (69.3 mg/L) or a combination of them along with control group. Activities of acid phosphatase (ACP), lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G-6-PDH) were estimated. Moreover, gill, liver and kidney were assayed for activities of superoxide dismutase (SOD), catalase (CAT) and levels of glutathione (GSH) and malondialdehyde (MDA). Individual exposure showed that both Cd and Pb significantly decreased LDH activity and SOD activity in the kidney. Pb significantly increased G-6-PDH activity and decreased GSH level in the gill. CAT activity in liver and kidney elevated significantly on Cd exposure while lead caused a significant depletion in the liver and significant elevation in the kidney. Both Cd and Pb significantly increased MDA levels in liver and kidney while Pb increased its level in gills. The combined exposure resulted in normalization of LDH, G-6-PDH activity, and CAT activity in liver and kidney as well as GSH level in both tissues and MDA in gill and kidney. The combination increased SOD activity and MDA level in liver and decreased SOD activity in kidney and GSH level in gills. In conclusion, the antioxidant system of African catfish was adversely affected by prolonged exposure to Cd and Pb. The combined exposure caused less damage than individual exposure and returned most parameters to those of controls.

Prediction Model of CNC Processing Defects Using Machine Learning (머신러닝을 이용한 CNC 가공 불량 발생 예측 모델)

  • Han, Yong Hee
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.249-255
    • /
    • 2022
  • This study proposed an analysis framework for real-time prediction of CNC processing defects using machine learning-based models that are recently attracting attention as processing defect prediction methods, and applied it to CNC machines. Analysis shows that the XGBoost, CatBoost, and LightGBM models have the same best accuracy, precision, recall, F1 score, and AUC, of which the LightGBM model took the shortest execution time. This short run time has practical advantages such as reducing actual system deployment costs, reducing the probability of CNC machine damage due to rapid prediction of defects, and increasing overall CNC machine utilization, confirming that the LightGBM model is the most effective machine learning model for CNC machines with only basic sensors installed. In addition, it was confirmed that classification performance was maximized when an ensemble model consisting of LightGBM, ExtraTrees, k-Nearest Neighbors, and logistic regression models was applied in situations where there are no restrictions on execution time and computing power.

A Study of Simultaneous Hydrodesulfurization and Hydrocracking Reactions over CoMo, NiMo/ZSM-5 Catalysts (CoMo, NiMo/ZSM-5 촉매상에서 동시적인 수첨탈황과 수소화 분해반응에 관한 연구)

  • 정우식;고을석;김경림
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.140-146
    • /
    • 1993
  • CoMo, NiMo/ZSM-5 catalysts were prepared at Si/Al ratios of 100, 200 and characterized by TGA, XRD and SEM. Simultaneous hydrocracking of n-heptane and hydrodesulfurization of DBT were studied over these catalysts at the ranges of temparatures between 400$^\circ$C and 500$^\circ$C, pressure of 30 $\times 10^5$ Pa and contact time of 0.02g cat. hr/ml feed in a fixed bed flow reactor. It was shown that the hydrocracking activity of n-heptane increased in the order of NM 100, CM 100, NM 200 and CM 200 catalysts. It was also shown that the Hydrodesulfurization activity of DBT increased in the order of CM 200, NM 200, CM 100 and NM 100 catalysts and these results were thought to be that the increase of acidity of catalysts might increase hydrocracking activity of these catalysts but deactive those simultaneously. In this study it was shown that CM 100 and NM 200 were active catalysts in simultaneous hydrodesulfurization of DBT and hydrocracking of n-heptane reactions.

  • PDF

In Vitro evaluation of lipid accumulation inhibitory effect in 3T3-L1 cell and antioxidant enzyme activity of Codonopsis lanceolata using different solvent fractions

  • Boo, Hee Ock;Park, Jeong Hun;Kim, Hag Hyun;Kwon, Soo Jeong;Lee, Moon Soon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.292-292
    • /
    • 2017
  • This study was conducted to evaluate the effect of anti-obesity and antioxidant enzyme activities in vitro by different solvent fractions from the roots of Codonopsis lanceolata. The cytotoxicity of different solvent fractions of C. lanceolata on 3T3-L1 preadipocytes were evaluated using the MTT assay, the rate of cell survival progressively decreased in a dose-dependent manner. Butyl alcohol fraction at $200{\mu}g/mL$ exhibited a pronounced cytotoxic effect (75.73%) on 3T3-L1 cell comparable to that of the hexane fraction (79.82%), methylene chloride fraction (84.02%), ethyl acetate fraction (87.62%) and DW fraction (86.30%) at the same concentration. The Oil Red O solution was used to determine whether different solvent fractions of C. lanceolata induce adipocyte differentiation in 3T3-L1 preadipocytes. Confluent 3T3-L1 cells were treated with $50{\mu}g/mL$ concentration of solvent fraction extracts from C. lanceolata. Inhibitory degree of lipid accumulation against solvent fraction extracts showed a significant level compared with the control. Both lipid accumulation and adipocyte differentiation showed relatively high effect on methyl chloride fraction. The root extract of C. lanceolata had the highest SOD enzyme activity of 84.5% in ethyl acetate partition layer and while water partition layer of diploid showed the lowest SOD enzyme activity of 57.9%. The activity of CAT, APX and POD showed a significantly higher activity in ethyl acetate partition layer compared with the other fraction. These results suggested that the roots of C. lanceolata may assist in the potential biological activity on anti-obesity and antioxidant capacity.

  • PDF

Application of Extracorporeal Ultrafiltration Therapy Given to a Dog and a Cat with Pulmonary Edema and Renal Failure (폐부종 및 신부전을 동반한 개와 고양이에서 체외초미세여과법을 이용한 치료)

  • Park, Hyung-Jin;Byun, Seok-Young;Choi, Jun-Hyuk;Lee, Jong-Bok;Song, Kun-Ho;Seo, Kyoung-Won
    • Journal of Veterinary Clinics
    • /
    • v.33 no.1
    • /
    • pp.34-38
    • /
    • 2016
  • A 13-year-old castrated male mixed breed dog and a 12-year-old castrated male mixed breed cat were referred to the hospital for the treatment of pulmonary edema and azotemia at the same time. To resolve the pulmonary edema and azotemia, intermittent hemodialysis (HD) was performed using ultrafiltration (UF), and the pulmonary edema, azotemia, other electrolyte and acid-base imbalances were improved. This case study demonstrated that when we encountered pulmonary edema patients with diuretic resistance, severe electrolyte imbalance, and impaired renal function complicated by decongestive therapy using diuretics, UF therapy can be considered a life-saving intervention.