• Title/Summary/Keyword: CASTANOPSIS SIEBOLDII

Search Result 75, Processing Time 0.026 seconds

Vegetation Succession and Rate of Topsoil Development on Shallow Landslide Scars of Sedimentary Rock Slope Covered by Volcanic Ash and Pumice, Southern Kyushu, Japan

  • Teramoto, Yukiyoshi;Shimokawa, Etsuro;Ezaki, Tsugio;Kim, Suk-Woo;Jang, Su-Jin;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.196-204
    • /
    • 2016
  • In this study, vegetation succession and the rate of consequent topsoil development were investigated in shallow landslide scars of sedimentary rock slopes covered by volcanic ashes and pumice in Kagoshima prefecture, Japan. Seven shallow landslide scars of different ages were selected as study areas. In the initial period after the occurrence of a shallow landslide, deciduous broad-leaved trees such as Mallotus japonicus or Callicarpa mollis were occupied in the areas. Approximately 30 years after the landslide, evergreen broad-leaved trees such as Cinnamomum japonicum invaded in the areas, already existed present deciduous broad-leaved trees. After 50 years, the summit of the canopy comprised evergreen broad-leaved trees such as Castanopsis cuspidata var. sieboldii and Machilus thunbergii. Moreover, the diversity of vegetation invading the site reached the maximum after 15 years, followed by a decrease and stability in the number of trees. The total basal areas under vegetation increased with time. It was concluded that the vegetation community reaches the climax stage approximately 50 years after the occurrence of a shallow landslide in the study areas, in terms of the Fisher-Williams index of diversity (${\alpha}$) and the prevalence of evergreen broad-leaved trees. Moreover, according to the results of topsoil measurement in the study areas, the topsoil was formed at the rate of 0.31 cm/year. The development of topsoil usually functions to improve the multi-faceted functions of a forest. However, when the increased depth of topsoil exceeds the stability threshold, the conditions for a shallow landslide occurrence are satisfied. Therefore, we indicated to control the depth of topsoil and strengthen its resistance by forest management in order to restrain the occurrence of shallow landslides.

Community Structure and Habitat Environment of Genus Liriope Group in Korea (한반도 맥문동속 집단의 자생지 생육환경과 군락구조)

  • Song, Hong-Seon;Lee, Jung-Hoon;Kim, Seong-Min;Shin, Dong-Il;Kim, Chang-Ho;Koo, Han-Mo;Park, Chung-Berm;Park, Yong-Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • This text was analyzed and investigated the vegetation and floristic composition by cluster analysis and classification of phytosociological method, to evaluate the species composition, habitat environment and community structure of Liriope platyphylla and Liriope spicata group in Korea. The southeast slope gradient of the habitat of L. platyphylla and L. spicata was 6.7 to 8.4%, and the habitat altitude of L. platyphylla (41.0 m), L. spicata (114.9 m) was different. Habitat distribution of L. spicata was broader than L. platyphylla. Appearing plants of L. platyphylla and L. spicata group was 58 taxa, 99 taxa, respectively, and Coverage of tree layer was 87.5%, 92.5% respectively. In genus Liriope group, the highest appearing frequency of plant grow in the moist valley as Quercus serrata. Thus, plants of genus Liriope growth was better in moist shade. The vegetation of L. platyphylla group was classified into Quercus serrata community, Castanopsis sieboldii community, Pinus densiflora community and Pinus thunbergii community, and the Liriope spicata group was classified into Quercus serrata community, Quercus alien community, Quercus acutissima community, Prunus verecunda community, Robinia pseudoacacia community, Pinus densiflora community and Pinus thunbergii community. In genus Liriope group, Quercus serrata and Pinus densiflora communities was the closest the similarities.

Conservation and Vegetation Structure of Euchresta japonica (Leguminosae) in Jeju Island (제주도 만년콩(콩과) 자생지의 식생구조와 보전 방안)

  • Song, Gwan-Pil;Jang, Chang-Gee;Kang, Shin-Ho
    • Korean Journal of Plant Resources
    • /
    • v.25 no.1
    • /
    • pp.89-95
    • /
    • 2012
  • This study was conducted to provide basic information for conservation and restoration through investigation of vegetation structure on the Euchresta japonica Hook. f. ex Regel (Korean endangered species) in Mt. Halla in Jeju Island. Very few individuals were discontinuously distributed and restricted at 220 m above sea level, very steep slope ($40-50^{\circ}$), rocky area of north face of Donneko Valley. For investigation of environmental condition, we established $10{\times}20\;m$ quadrat and one control $20{\times}20\;m$ quadrat in the habitats. Thirty three species were found at habitat under 10-16 m Castanopsis sieboldii tree layer (70-80%). The principal causes of threat which were investigated in this study are competition among companies, very steep slopes, artificial management of valley. For restoration and conservation of habitats, it is needed to suitable plans.

Ecological Study on the Flora of the Wi Island (위도 식물상의 생태학적 연구)

  • Huh, Kwang Shin;Il Koo Lee
    • The Korean Journal of Ecology
    • /
    • v.4 no.3_4
    • /
    • pp.68-79
    • /
    • 1981
  • We discovered following on our surveys to the island six times in May, August (1978), in April, May, June, July (1979). There are 73 families, 158 genera, 189 species, 31 varieties over Tracheophyta Fuller & Tippo. Till early or middle age of Lee Dynasty, the island's dominant plants was evergreen broad-leaved trees, mainly consisted with Camellia japonica L. and Castanopsis cuspidata Schot, var. sieboldii Nakai but due to the population growth and increased exiles constant ground burnt off fr cultivation, the number of evergreen broad-leaved trees was decreased and that of P. densiflora S. et Z. replaced position. That is to say, the island was dominated by the flora of the subtropical zone era, but it has been complicated by flora of the temperate zone whose reproductivity is more vivid, in modern era. Recently Pinus thunbergiana Franco, Robinia pseudo-acasasia L. Amoroha fructicasia L. invaded and reserved inthe island. During a decade of the end of Japanes rule and after liberation about all of Pinus densiflora S. et Z. were cut downed, and after that, under the Forest Bureau, there have being sucessed to Pinus thunbergiana France. Camellia japonica L. other 20 species of evergreen broad-leaved trees are distributed in Island Wi, a tutelary shrine of Dae Ri, a mountain at the back of a village of Chi Do Ri and a mountain at the back of Jin Ri administrative office of a township. The special plants of the island are 1) state of Lycoris aurea Herb which of foun in a ridge between fields and forest around Jin Ri and 2) stock of Cmbidium virescens Lindly bloomed under the Pinus densiflora forest of Keun Tan Chi Do.

  • PDF

Vegetation and Environment of the Natural Monument (No. 432) Jeju Sanghyo-dong Cymbidium kanran Habitat (천연기념물 제432호 제주 상효동 한란 자생지의 환경 및 식생)

  • Shin, Jae-Kwon;Koo, Bon-Youl;Kim, Han-Gyeoul;Son, Sung-Won;Cho, Hyun-Je;Bae, Kwan-Ho;Ryang, Hyung-Ho;Park, Joeng-Geun;Lee, Jong-Suk;Cho, Yong-Chan
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.321-338
    • /
    • 2014
  • In the Natural Monument (No. 432) Jeju Sanghyo-dong Cymbidium kanran Habitat (39 ha), flora, vegetation diversity, stand structure, mirco-climate, canopy openness, light environment and soil temperature and moisture were quantified from Oct. 2013 to Feb. 2014. Compare to Seogwipo-si, daily mean temperature ($5.7^{\circ}C$) and moisture (75.8%) in study area were lower at $3.3^{\circ}C$ and 15%, respectively. Mean soil temperature and moisture were $16.5^{\circ}C$ and 37.3%, respectively, and mean litter layer depth (n = 81) was 4.3 cm. Mean canopy openness and light availability at forest floor were 15.5% and $8.5mol{\cdot}m^{-2}{\cdot}day^{-1}$, respectively. Total of 22 species including vascular and bryophyte plants and 6 vegetation group were observed. Castanopsis siebildii was dominant species in study area, and density and basal area were 1,777 stem/ha and $90.3m^2/ha$.

Optical Method for Measuring Deposition Amount of Black Carbon Particles on Foliar Surface

  • Yamaguchi, Masahiro;Takeda, Kenta;Otani, Yoko;Murao, Naoto;Sase, Hiroyuki;Lenggoro, I. Wuled;Yazaki, Kenichi;Noguchi, Kyotaro;Ishida, Atsushi;Izuta, Takeshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.268-274
    • /
    • 2012
  • To perform quick measurements of black carbon (BC) particles deposited on foliar surfaces of forest tree species, we investigated an optical method for measuring the amount of BC extracted from foliar surfaces and collected on quartz fiber filters. The seedlings of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica were exposed to submicron BC particles for one growing season (1 June to 7 December 2009). At the end of the growing season, the leaves or needles of the seedlings were harvested and washed with deionized water followed by washing with chloroform to extract the BC particles deposited on the foliar surfaces. The extracted BC particles were collected on a quartz fiber filter. The absorption spectrum of the filters was measured by spectrophotometer with an integrating sphere. To obtain the relationship between the absorbance of the filter and the amount of BC particles on the filter, the amount of BC particles on the filter was determined as that of elemental carbon (EC) measured by a thermal optical method. At wavelengths below 450 nm, the absorption spectrum of the filter showed absorption by biological substances, such as epicuticular wax, resulting in the low coefficient of determination ($R^2$) in the relationship between the amount of EC on the filter ($M_{EC}$, ${\mu}g\;C\;cm^{-2}$ filter area) and the absorbance of the filter. The intercept of the regression line between $M_{EC}$ and the absorbance of the filter at 580 nm ($A_{580}$) was closest to 0. There was a significant linear relationship between the $A_{580}$ and $M_{EC}$ ($R^2$=0.917, p<0.001), suggesting that the amount of BC particles collected on the filter can be predicted from the absorbance. This optical method might serve as a simple, fast and cost-effective technique for measuring the amount of BC on foliar surfaces.

Characteristics of vegetation succession on the Pinus thunbergii forests in warm temperate regions, Jeju Island, South Korea

  • Hong, Yongsik;Kim, Euijoo;Lee, Eungpill;Lee, Seungyeon;Cho, Kyutae;Lee, Youngkeun;Chung, Sanghoon;Jeong, Heonmo;You, Younghan
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.438-453
    • /
    • 2019
  • Background: To investigate the trends of succession occurring at the Pinus thunbergii forests on the lowlands of Jeju Island, we quantified the species compositions and the importance values by vegetation layers of Braun-Blanquet method on the Pinus thunbergii forests. We used multivariate analysis technique to know the correlations between the vegetation group types and the location environmental factors; we used the location environment factors such as altitudes above sea level, tidal winds (distance from the coast), annual average temperatures, and forest gaps to know the vegetation distribution patterns. Results: According to the results on the lowland of Jeju Island, the understory vegetation of the lowland Pinus thunbergii forests was dominated by tall evergreen broad-leaved trees such as Machilus thunbergii, Neolitsea sericea, and Cinnamomum japonicum showing a vegetation group structure of the mid-succession, and the distribution patterns of vegetation were determined by the altitudes above sea level, the tidal winds on the distance from the coast, the annual average temperatures, and the forest gaps. We could discriminate the secondary succession characteristics of the Pinus thunbergii forests on the lowland and highland of Jeju Island of South Korea. Conclusions: In the lowland of Jeju Island, the secondary succession will progress to the form of Pinus thunbergii (early successional species)→Machilus thunbergii, Litsea japonica (mid-successional species)→Machilus thunbergii (late-successional species) sequence in the temperate areas with strong tidal winds. In the highland of Jeju Island, the succession will progress to the form of Pinus thunbergii (early successional species)→Neolitsea sericea, Eurya japonica (mid-successional species)→Castanopsis sieboldii (late-successional species) sequence in the areas where tidal winds are weak and temperatures are relatively low. However, local differences between lowland and highland of Jeju Island will be caused by the micro-environmental factors resulting from the topographic differences and the supply of tree seeds. From the characteristics of succession study, we could properly predict and manage the Pinus thunbergii forest ecosystem on lowland and highland of Jeju Island.

The Characteristics and Survival Rates of Evergreen Broad-Leaved Tree Plantations in Korea (난대상록활엽수종 조림지 활착률과 영향인자)

  • Park, Joon-Hyung;Jung, Su-Young;Lee, Kwang-Soo;Lee, Ho-Sang
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.513-521
    • /
    • 2019
  • With rapid climate change and increasing global warming, the distribution of evergreen broad-leaved trees (EBLTs) is gradually expanding to the inland regions of Korea. The aim of the present study was to analyze the survival rate of 148 EBLT plantations measuring 180 ha and to determine the optimal plantation size that would help in coping with climate change in the warm, temperate climate zone of the Korean peninsula. For enhancing the reliability of our estimated survival model, we selected a set of 11 control variables that may have also influenced the survival rates of the EBLTs in the 148 plantations. The results of partial correlation analysis showed that the survival rate of 67.0±26.9 of the EBLTs in the initial plantation year was primarily correlated with plantation type by the crown closure of the upper story of the forest, wind exposure, and precipitation. For predicting the probability of survival by quantification theory, 148 plots were surveyed and analyzed with 11 environmental site factors. Survival rate was in the order of plantation type by the crown closure of upper story of the forest, wind exposure, total cumulative precipitation for two weeks prior to planting, and slope stiffness in the descending order of score range in the estimated survival model for the EBLTs with the fact that survival rate increased with shade rate of upper story to some extent.

Classification of Forest Vegetation for Forest Genetic Resource Reserve Area in Heuksando sland (흑산도 산림유전자원보호구역의 산림식생 유형)

  • Lee, Jeong-Eun;Shin, Jae-Kwon;Kim, Dong-Kap;Yun, Chung-Weon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.3
    • /
    • pp.289-302
    • /
    • 2018
  • The study investigated the forest vegetation in 59 plots between June 2017 and August 2017 to understand the forest vegetation structure of the protected zone for forest genetic resource conservation (forest genetic resource reserve area) in Heuksando Island. We classified the vegetation using the Z-M phytosociological method analyzed the importance value and species diversity of each vegetation classification. The analysis showed the Camellia japonica community group at a top level of forest vegetation hierarchy. In the level of community, it was classified into Dendropanax morbiferus community (Vegetation unit 1; VU 1), Carpinus turczaninowii community, and C. japonica typical community (VU 6). C. turczaninowii community was subdivided into Buxus koreana group (VU 2), Rhododendron mucronulatum group (VU 3), Vitis amurensis group (VU 4) and C. turczaninowii typical group (VU 5). Therefore, it was classified into a total of six vegetation units (one community group, three communities, and four groups). The analysis of the mean codominant value of each VU show that Quercus acuta was the highest in VU 1, C. turczaninowii in VU 2, Pinus thunbergii in VU 3, Pinus densiflora in VU 4, and Castanopsis sieboldii in VU 5 and VU 6. The analysis of species diversity showed that VU 2 was the highest among six units in species richness index, species diversity index, and species evenness index. VU 6 showed the highest among six units in species dominance index. In conclusion, a synecology approach to manage six units and twelve species groups was needed for the forest vegetation of Heuksando Island protected area for forest genetic resource conservation.

The Characteristics of Cinnamomum japonicum Community in Japan's Special Natural Monument Area (일본 특별천연기념물 녹나무군락의 특성 분석)

  • Shim, Hang-Yong;Park, Seok-Gon;Choi, Song-Hyun;Lee, Sang-Cheol;Yu, Chan-Yeol;Sung, Chan-Yong
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.1
    • /
    • pp.52-63
    • /
    • 2019
  • This study analyzed the characteristics of vegetation structure of the camphor tree (Cinnamomum japonicum) community in the area of mount Tachibana, Kasuya county, Fukuoka Prefecture designated as a special natural monument in Japan. The survey showed overwhelming dominance of canopy tree in the canopy layer (about 30 m in tree heights and 92.79 cm in average breast height diameter) but no appearance in the understory layer or the shrub layer. In the understory layer and the shrub layer, Castanopsis sieboldii, Machilus thunbergii, Neolitsea sericea, and Cinnamomum yabunikkei, which were the competing species to the canopy layer and the late-successional species in the warm temperate climate zone, were mainly distributed. Moreover, the species diversity was generally low, indicating the vegetation characteristics that was not typical of evergreen broad-leaved forests. This is presumably because camphor trees were actively planted, protected, and cultivated to produce camphor which was valuable in the past. Although this site has not been artificially managed for the past 90 years as the raw materials of camphor have not been collected, vegetation transition did not proceed, which is unique. It is probably due to the fact that camphor was overwhelmingly dominant in the canopy layer so that the inflows of species were restricted, and young tree germination did not occur due to the allelopathy effects of camphor trees.