• 제목/요약/키워드: CAS500

검색결과 58건 처리시간 0.033초

농림위성을 위한 기계학습을 활용한 복사전달모델기반 대기보정 모사 알고리즘 개발 및 검증: 식생 지역을 위주로 (Machine Learning-Based Atmospheric Correction Based on Radiative Transfer Modeling Using Sentinel-2 MSI Data and ItsValidation Focusing on Forest)

  • 강유진;김예진;임정호;임중빈
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.891-907
    • /
    • 2023
  • Compact Advanced Satellite 500-4 (CAS500-4) is scheduled to be launched to collect high spatial resolution data focusing on vegetation applications. To achieve this goal, accurate surface reflectance retrieval through atmospheric correction is crucial. Therefore, a machine learning-based atmospheric correction algorithm was developed to simulate atmospheric correction from a radiative transfer model using Sentinel-2 data that have similarspectral characteristics as CAS500-4. The algorithm was then evaluated mainly for forest areas. Utilizing the atmospheric correction parameters extracted from Sentinel-2 and GEOKOMPSAT-2A (GK-2A), the atmospheric correction algorithm was developed based on Random Forest and Light Gradient Boosting Machine (LGBM). Between the two machine learning techniques, LGBM performed better when considering both accuracy and efficiency. Except for one station, the results had a correlation coefficient of more than 0.91 and well-reflected temporal variations of the Normalized Difference Vegetation Index (i.e., vegetation phenology). GK-2A provides Aerosol Optical Depth (AOD) and water vapor, which are essential parameters for atmospheric correction, but additional processing should be required in the future to mitigate the problem caused by their many missing values. This study provided the basis for the atmospheric correction of CAS500-4 by developing a machine learning-based atmospheric correction simulation algorithm.

농림위성 산림분야 식생지수 검보정 사이트 설계 (Design of Calibration and Validation Area for Forestry Vegetation Index from CAS500-4)

  • 임중빈;차성은;원명수;김준;박주한;류영렬;이우균
    • 대한원격탐사학회지
    • /
    • 제38권3호
    • /
    • pp.311-326
    • /
    • 2022
  • 우리나라 산림의 효율적인 관리와 산림 모니터링을 위해 산림청은 농림위성을 개발 중이며 2025년 발사 예정이다. 농림위성을 효율적으로 활용하기 위해 산림청 국립산림과학원은 36종의 농림위성 산림분야 활용산출물 개발을 진행 중이다. 원격탐사 기법을 활용하여 도출된 산출물들은 지상검증이 요구되며 해당 산출물들에 대한 품질 모니터링 결과를 지속적으로 보고해야 한다. 국내 최초로 산림분야 활용 위성이 개발되는 상황이라 국내에는 공식적인 산림분야 활용 산출물 검보정 사이트가 부재하다. 이에 저자들은 국제기준에 맞춰 농림위성 산림분야 활용산출물 검보정을 위한 검보정 사이트를 설계하였다. 또한 전국적으로 검보정 사이트를 설치하기 위해 적정 센서를 선택하여 해당 센서의 활용 가능성을 평가하였다. 평가 결과 지상 관측데이터와 Sentinel-2 영상과의 산림 산출물에 대한 오차가 ±5% 이내로 관측되어 해당 센서를 활용하여 전국적으로 확장이 가능함을 확인하였다.

수체 추출을 위한 Geo-SAM 기법의 응용: 국토위성영상 적용 실험 (Application of Geo-Segment Anything Model (SAM) Scheme to Water Body Segmentation: An Experiment Study Using CAS500-1 Images)

  • 이하영;김광섭;이기원
    • 대한원격탐사학회지
    • /
    • 제40권4호
    • /
    • pp.343-350
    • /
    • 2024
  • Meta에서 신속한 영상 분할 기능을 제공하는 대규모 컴퓨터 비전 생성 모델을 발표한 이후, 여러 활용 분야에서 이를 적용하려는 연구가 이루어지고 있다. 이 연구에서는 위성 영상 자료에 Segment Anything Model (SAM)을 사용할 수 있는 QGIS 플러그인 Geo-SAM을 사용하여 수체 객체 탐지와 추출에 대한 SAM의 적용성을 조사해 보고자 하였다. 실험 대상 자료는 국토위성(Compact Advanced Satellite 500, CAS500-1) 영상을 사용하였다. 이 자료를 가지고 SAM을 적용하여 얻은 결과는 같은 입력 영상으로부터 수작업으로 제작한 수체 객체 자료, Open Street Map (OSM)의 수체 자료, 국토지리정보원의 수계 수치지도와 비교하였다. SAM 처리 결과와 비교 대상 자료를 이용하여 추출된 모든 객체를 대상으로 계산한 경계사각형의 교집합/합집합의 평균값을 나타내는 mean Intersection over Union (mIoU)은 각각 0.7490, 0.5905, 0.4921로 나타났고, 각 자료에서 공통으로 나타나거나 추출된 객체에 대해 계산한 결과는 차례대로 0.9189, 0.8779, 0.7715로 나타났다. SAM을 적용한 결과와 다른 비교 자료와의 공간적 일치도를 분석한 결과, SAM에서는 한 개의 수체 객체를 여러 개의 분할 요소로 나타내므로 수체 객체 분류를 지원하는 의미 있는 결과를 보이고 있음을 알 수 있다.

특징점 추출기법을 이용한 접근불능지역의 위성영상 GCP 칩 자동추출 (GCP Chip Automatic Extraction of Satellite Imagery Using Interest Point in North Korea)

  • 이계동;윤종성
    • 한국측량학회지
    • /
    • 제37권4호
    • /
    • pp.211-218
    • /
    • 2019
  • 국토교통부에서는 2019년과 2020년에 차세대 중형위성 1호 및 2호 기를 발사하여, 지구환경 모니터링 및 접근불능지역에 대한 수치지도 제작에 활용하고자 하고 있다. 차세대 중형 위성을 통해 수집된 위성영상정보는 지구환경 모니터링, 지형도 제작, 재난재해 예방을 위한 분석 등 다양한 분야에 활용이 가능하다. 이와 같이 다양한 분야에 활용하기 위해서는 위성영상의 위치정확도 확보가 중요하며, 위성영상의 정밀기하수립을 위해 지표상의 정확한 지상기준점(GCP: Ground Control Point)을 사용하여 정밀 센서 모델을 수립하는 과정이 필요하다. 또한, 다양한 분야의 활용을 위해 정사영상 구축을 위한 단계별 자동화가 필요하며, 이를 위해 위성영상 GCP 칩의 DB (Data Base)가 체계적으로 구축되어야 한다. 따라서 본 연구에서는 위성영상의 정밀기하수립을 위하여 GCP를 자동 추출하는 다양한 기법들을 분석하여 최적의 방법을 도출하고자 한다.

스테레오 스트립 위성영상을 이용한 비 접근지역의 1:5000 도엽별 DSM 추출 가능성 연구 (1:5000 Scale DSM Extraction for Non-approach Area from Stereo Strip Satellite Imagery)

  • 이수암;정성우;박지민
    • 대한원격탐사학회지
    • /
    • 제36권5_2호
    • /
    • pp.949-959
    • /
    • 2020
  • 본 논문에서는 CAS500-1/2를 이용한 산출물 생성에 관련한 선행연구로 KOMPSAT-3A 스트립영상을 사용한 비접근 지역의 도엽별 DSM을 생성하는 방법을 제안한다. 제안 기법은 1:5000 도엽정보의 입력을 통한 영역 설정을 통해 도엽별로 산출물이 나올 수 있도록 설계됐으며, 강인한 스테레오 영상정합 기법인 MDR을 적용하여 스테레오 페어에서도 최적의 DSM이 나오도록 설정했다. 스트립 영상이 분할된 여러 장의 단위 영상으로 들어오는 것을 고려하여 하나의 도엽에 여러 쌍의 영상 페어를 처리하여 통합하는 방식으로 DSM의 생성을 시도했으며, 처리결과 도엽 간의 접합부분에서 이격 발생을 최소화한 DSM의 생성이 가능함을 확인할 수 있었다. 최종적으로 GCP와의 비교를 통한 정확도 검증결과 5 m 이내의 정확도가 나타나는 것을 확인할 수 있었다.

Matching Performance Analysis of Upsampled Satellite Image and GCP Chip for Establishing Automatic Precision Sensor Orientation for High-Resolution Satellite Images

  • Hyeon-Gyeong Choi;Sung-Joo Yoon;Sunghyeon Kim;Taejung Kim
    • 대한원격탐사학회지
    • /
    • 제40권1호
    • /
    • pp.103-114
    • /
    • 2024
  • The escalating demands for high-resolution satellite imagery necessitate the dissemination of geospatial data with superior accuracy.Achieving precise positioning is imperative for mitigating geometric distortions inherent in high-resolution satellite imagery. However, maintaining sub-pixel level accuracy poses significant challenges within the current technological landscape. This research introduces an approach wherein upsampling is employed on both the satellite image and ground control points (GCPs) chip, facilitating the establishment of a high-resolution satellite image precision sensor orientation. The ensuing analysis entails a comprehensive comparison of matching performance. To evaluate the proposed methodology, the Compact Advanced Satellite 500-1 (CAS500-1), boasting a resolution of 0.5 m, serves as the high-resolution satellite image. Correspondingly, GCP chips with resolutions of 0.25 m and 0.5 m are utilized for the South Korean and North Korean regions, respectively. Results from the experiment reveal that concurrent upsampling of satellite imagery and GCP chips enhances matching performance by up to 50% in comparison to the original resolution. Furthermore, the position error only improved with 2x upsampling. However,with 3x upsampling, the position error tended to increase. This study affirms that meticulous upsampling of high-resolution satellite imagery and GCP chips can yield sub-pixel-level positioning accuracy, thereby advancing the state-of-the-art in the field.

한국형발사체에 기반한 소형발사체의 스테이징 및 투입성능 분석 (Staging and Injection Performance Analysis of Small Launch Vehicle Based on KSLV-II)

  • 조민선;김재은;최정열
    • 한국항공우주학회지
    • /
    • 제49권2호
    • /
    • pp.155-166
    • /
    • 2021
  • 본 논문에서는 한국형발사체 2, 3단을 수정하여 500 kg 급 차세대 중형위성(CAS500)을 지구 저궤도(LEO)에 단독 발사할 수 있는 2단형 소형발사체를 설계하였다. 한국형발사체는 3단 발사체이므로 소형발사체로의 활용을 위해서는 단별 속도증분이 새롭게 분배되어야 한다. 이를 위하여 설계 변수로는 단 질량비, 구조비와 1, 2단 엔진 옵션을 고려하였으며, 이에 대한 단 설계 및 궤적해석을 수행하였다. 결과 검토로부터 500 kg 급 위성의 LEO 단독 발사가 가능한 소형발사체 설계변수의 조합을 확인하였다.

Introduction of the UVOMPIS (UV-Optical Multiband Polarizing Imager System) onboard the CAS500-3

  • Lee, Daehee
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.40.2-40.2
    • /
    • 2020
  • 500kg급 차세대중형위성은 공공분야 위성 수요에 효과적으로 대응하고, 국내 위성산업 저변 확대 및 산업체 육성을 위한 사업으로 개발되고 있다. 국내 산업체에서 개발되는 표준 위성 플랫폼이 적용될 예정인 차세대중형위성3호는 우주과학/기술검증용 위성으로, 특히 한국형발사체에 의해 2023년 발사된다는 점이 특별하다. 본 발표에서는 차세대 중형위성 3호에 제안한 우주망원경 UVOMPIS (UV-Optical Multiband Polarizing Imager System)에 대한 개념 설계 결과 및 과학 임무에 대한 소개를 통해 국내 학계와 산업계의 협력과 관심을 유도하고자 한다.

  • PDF

농림위성 활용을 위한 산불 피해지 분류 딥러닝 알고리즘 평가 (Deep Learning-based Forest Fire Classification Evaluation for Application of CAS500-4)

  • 차성은;원명수;장근창;김경민;김원국;백승일;임중빈
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1273-1283
    • /
    • 2022
  • 최근 기후변화로 인해 중대형 산불이 빈번하게 발생하여 매년 인명 및 재산피해로 이어지고 있다. 원격탐사를 활용한 산불 피해지 모니터링 기법은 신속한 정보와 대규모 피해지의 객관적인 결과를 취득할 수 있다. 본 연구에서는 산불 피해지를 분류하기 위해 Sentinel-2의 분광대역, 정규식생지수(normalized difference vegetation index, NDVI), 정규수역지수(normalized difference water index, NDWI)를 활용하여 2022년 3월 발생한 강릉·동해 산불 피해지를 대상으로 U-net 기반 convolutional neural networks (CNNs) 딥러닝 모형을 모의하였다. 산불 피해지 분류 결과 강릉·동해 산불 피해지의 경우 97.3% (f1=0.486, IoU=0.946)로 분류 정확도가 높았으나, 과적합(overfitting)의 가능성을 배제하기 어려워 울진·삼척 지역으로 동일한 모형을 적용하였다. 그 결과, 국립산림과학원에서 보고한 산불 피해 면적과의 중첩도가 74.4%로 확인되어 모형의 불확도를 고려하더라도 높은 수준의 정확도를 확인하였다. 본 연구는 농림위성과 유사한 분광대역을 선택적으로 사용하였으며, Sentinel-2 영상을 활용한 산불 피해지 분류가 정량적으로 가능함을 시사한다.

다종 위성영상 자료 융합 기반 수자원 모니터링 기술 개발 (Water resources monitoring technique using multi-source satellite image data fusion)

  • 이슬찬;김완엽;조성근;전현호;최민하
    • 한국수자원학회논문집
    • /
    • 제56권8호
    • /
    • pp.497-508
    • /
    • 2023
  • 수자원의 계절적 편중이 심한 한반도에서 농업용 저수지는 이를 효과적으로 유지 및 관리하기 위한 필수적인 구조물이다. 저수지 모니터링을 위한 수단으로 광학 및 합성개구레이더(Synthetic Aperture Radar, SAR) 위성영상이 활용되고 있으나, 광학영상은 기상현상에 의한 간섭이 심하다는 한계점이 존재하며, SAR 영상은 짙은 식생에서 일어나는 다중 산란 및 노이즈에 의한 오탐지 및 미탐지가 발생하기 쉽다. 이에 본 연구에서는 광학 영상과 SAR 영상의 융합을 통해 저수지 수체 탐지 정확도를 높이고 상호보완적 작용에 대해 정량적으로 분석하고자 하였다. 경기도 이동저수지, 충청남도 천태 저수지를 대상으로, 국내 고해상도 위성인 차세대중형위성 1호, 다목적실용위성 3호 및 3A호, 그리고 유럽우주국의 Sentinel-2 영상 기반 Normalized Difference Water Index (NDWI)와 SAR 탑재 위성인 Sentinel-1 단일 영상에 비지도학습 기법인 K-means 클러스터링 기법을 사용하여 수체를 탐지하고, NDWI-SAR 후방산란계수로 이루어진 2-D grid space에 동일 기법을 활용하여 정확도의 향상 정도를 파악하였다. 전반적인 정확도는 다목적실용위성이 가장 높은 것으로 나타났으며(두 저수지 모두 0.98), 이후 Sentinel-1(두 저수지 모두 0.93), Sentinel-2(이동: 0.83, 천태: 0.97), 차세대중형위성(이동: 0.69, 천태: 0.78) 순서로 감소하였다. 천태저수지에서 2-D K-means 클러스터링 기법을 적용한 결과 차세대중형위성의 수체탐지 정확도는 약 85%의 정밀도 향상과 14%의 재현율 감소와 함께 약 22% 향상되었으며(정확도 약 0.95), 다목적실용위성 및 Sentinel-2의 수체탐지 정밀도는 3-5% 향상되었고, 재현율은 4-7% 감소하였다. 추후 차세대중형위성 5호인 수자원위성 등 고해상도 SAR 위성과 이를 활용할 수 있는 고도화된 영상 융합기술, 수체 탐지 기술이 개발된다면 국내 수자원에 대한 매우 정확한 모니터링이 가능할 것으로 기대된다.