일반적인 다층 신경망에서 가중치의 갱신 알고리즘으로 사용하는 오류 역전과 방식은 가중치 갱신 결과를 고정된(fixed) 한 개의 값으로 결정한다. 이는 여러 갱신의 가능성을 오직 한 개의 값으로 고정하기 때문에 다양한 가능성들을 모두 수용하지 못하는 면이 있다. 하지만 모든 가능성을 확률적 분포로 표현하는 갱신 알고리즘을 도입하면 이런 문제는 해결된다. 이러한 알고리즘을 사용한 베이지안 신경망 모형(Bayesian Neural Networks Models)은 주어진 입력값(Input)에 대해 블랙 박스(Black-Box)와같은 신경망 구조의 각 층(Layer)을 거친 출력값(Out put)을 계산한다. 이 때 주어진 입력 데이터에 대한 결과의 예측값은 사후분포(posterior distribution)의 기댓값(mean)에 의해 계산할 수 있다. 주어진 사전분포(prior distribution)와 학습데이터에 의한 우도함수(likelihood functions)에 의해 계산한 사후확률의 함수는 매우 복잡한 구조를 가짐으로 기댓값의 적분계산에 대한 어려움이 발생한다. 따라서 수치해석적인 방법보다는 확률적 추정에 의한 근사 방법인 몬테 칼로 시뮬레이션을 이용할 수 있다. 이러한 방법으로서 Hybrid Monte Carlo 알고리즘은 좋은 결과를 제공하여준다(Neal 1996). 본 논문에서는 Hybrid Monte Carlo 알고리즘을 적용한 신경망이 기존의 CHAID, CART 그리고 QUEST와 같은 여러 가지 분류 알고리즘에 비해서 우수한 결과를 제공하는 것을 나타내고 있다.
Journal of the Korean Data and Information Science Society
/
제20권1호
/
pp.65-75
/
2009
대부분의 대학에서는 개설된 강좌에 대한 학생들의 강의만족도를 통하여 교수들의 업적평가에 적용하기 위해 강의평가를 실시하고 있다. 그러나 강의평가점수는 강좌규모, 강의형태, 개설학년 등과 같은 많은 변수들에 의해 영향을 받으며, 그 결과로 강의평가결과는 심각한 편의를 갖는다. 따라서 본 연구에서는 강의평가결과의 사후조정을 위한 균등화방법과 그 효율성을 비교하고, 가장 좋은 효율성을 갖는 균등화방법을 제안하고자 한다.
Journal of Advanced Marine Engineering and Technology
/
제32권6호
/
pp.974-980
/
2008
Generally. most of the physical systems affected by disturbance or incomplete knowledge are complex and highly nonlinear. To control under these circumstances. many researches are ongoing in modern control theory recently. But the researches need apparatuses. which can verify the controller for being not damaged the real plant. In this paper. therefore. a seesaw system is considered control system to analyze and apply the control theory. A seesaw system consists of a moving cart on the rail and seesaw frame made to demonstrate the effectiveness of the control theory. The system has balancing and positioning problems. and the driving force is applied on the DC motor of cart. but not on the pivot. The purpose of control is to maintain an equilibrium of seesaw frame in spite of an allowable disturbance. Computer simulations are given to illustrate the control performance of the proposed scheme.
Journal of the Korean Data and Information Science Society
/
제12권2호
/
pp.11-25
/
2001
자료들 사이에 존재하는 관계, 패턴, 규칙등을 찾아내서 모형화 하는 통계적인 분류기법은 여러가지가 있다. 그러나 우리가 얻게 되는 지식은 어떤 일련의 분류규칙에 의해서가 아닌 관찰과 학습을 통한 훈련으로부터 얻게 된다. 본 베이지안 학습은 모든 형태의 불확실성을 표현하는 확률로써 우리의 믿음의 정도를 표현하는 것으로 해석될 수 있으며, 확실한 결과가 알려짐에 따라 확률이론 법칙을 사용하여 이러한 확률들을 갱신한다. 또한 신경망 모형은 이미 알고 있는 속성들에 근거하여 아직 알지 못하는 집단이나 특질들을 예측하게 해준다. 본 논문에서는 이러한 두 가지 방법을 결합한 베이지안 신경망과 기존의 CHAID, CART, QUBST 분류 알고리즘에 있어서 각각 오분류율을 비교연구하였다.
의학적 진단을 내리기 위해 시행되는 검사의 소요시간(turnaround time, TAT)은 환자대기시간과 직결되며 중요한 의료서비스 평가항목 중 하나이다. 본 연구에서는 주요 영상의학검사를 대상으로 TAT를 측정하고, 그 결과가 의료기관이 설정한 기준치를 달성하는지 여부를 분석하였다. 분류회귀나무 알고리즘을 이용한 예측 결과, "진료과", "상병", "검사종류", "실시월"이 적기처리 달성에 가장 큰 영향을 주는 요인으로 확인되었다. 본 연구는 의료서비스의 적기처리를 예측하는 모형을 통하여 의료서비스 지연을 사전에 조치할 수 있는 수단을 제공하였다는 데에 큰 의미가 있다.
IoT 와 인공지능을 접하려는 시도는 최근 들어서 많은 발전을 보이고 있다. 본 논문은 컴퓨팅 파워가 제한되는 작은 디바이스 IoT 의 한계를 극복하기 위하여 ROS 를 이용하여 복잡한 연산을 무선 통신으로 오프로딩하는 기법을 제안한다. 제안된 자율주행카드 시스템은 카트 이용 고객 개개인을 검출하고 추적하되 컴퓨터 비전 알고리즘과 LiDAR 센서를 이용하며, 음성인식 알고리즘을 적용하여 기계와 인간의 감성공학적 소통이 가능한 융합형 자율주행카트를 구현한다.
본 논문에서는 효율적인 얼굴 영역 검출 기법을 제안하고 얼굴 객체 검출을 통해 인물 기반의 비디오 시스템을 제공한다. 비디오 분할을 위해 비디오 시퀀스로부터 장면 전환점을 검출하고 분할된 장면들로부터 대표 프레임을 선정한다. 대표 프레임은 인접 프레임 간 변화량이 가장 적은 프레임으로 선정하였으며 추출된 대표 프레임에 대해서 얼굴 영역 검출 알고리즘을 적용하여 등장인물을 포함하는 프레임들을 정보로 제공한다. 얼굴영역 검출을 위해 피부색의 통계적 특성을 이용한 Bayes 분류기를 이용한다. 피부색 검출 결과 영상으로부터 수직 및 수평 투영 기법을 이용하여 영상 분할을 수행하고 후보군들을 생성한다. 생성된 후보군 중 오검출 영역을 최소화하기 위해서 이진 분류 나무(CART)를 이용하여 분류기를 생성한다. 특징 값으로는 SGLD(spatial gray level dependence) 매트릭스로부터 Inertial, Inverse Difference, Correlation 등의 질감 정보를 이용하여 최적의 이진 분류 나무를 생성한다. 실험 결과 제안된 얼굴 영역 검출 알고리즘은 복잡하고 다양한 배경에서도 우수한 성능을 보였으며, 얼굴 객체를 포함하는 프레임들을 비디오 정보로 제공한다. 제안하는 시스템은 향후 화자 인식 기법을 이용하여 등장인물 기반의 비디오 분석 및 에 활용될 수 있을 것이다.
본 논문은 모델기반 다중이동물체 추적을 위한 모델생성 알고리즘을 제안하였다. 제안한 알고리즘은 배경영상에 이동물체가 초기 진입했을 때의 초기모델생성 단계와 이동물체 추적 단계에서의 모델 갱신 단계로 구분하였다. 초기모델생성 단계에서는 차영상과 클러스터링 기법을 이용하여 분할된 분할영상과 현재프레임 영상에 대한 윤곽선 영상과의 로직 AND 연산을 수행하여 초기모델을 생성하였다. 모델갱신 단계에서는 하우스돌프 거리(Hausdorff Distance)와 2D-Logarithmic 탐색 알고리즘을 이용하여 추적중인 이동물체의 형태변화에 적응할 수 있도록 매 프레임 마다 새로운 모델을 갱신하였다. 실험은 도로에서 주행하는 자동차를 대상으로 도_의 실험을 수행하였다. 그 결과 도로에서 주행하는 자동차의 진입방향과 추적 대상 수가 불규칙한 경우에도 모델생성이 98% 이상 이루어짐을 알 수 있었다.
본 논문은 비선형 시스템의 새로운 퍼지 제어기 설계 기법을 제안한다. 기존의 퍼지 제어기 설계 방법들은 안정도 조건을 만족시키는 제어 이득을 얻기 위해 수학적인 접근을 통해 해를 찾는 방법들이 많이 연구되었다 하지만 플랜트와 제어 방법에 따라 이러한 수학적인 접근이 힘든 경우가 있다 본 논문에서는 이를 해결하기 위해 깊은 수학적인 접근이 아닌 지능적인 접근 방법을 사용하여 안정화된 퍼지 제어기의 설계하는 기법을 제안한다. 제안된 기법은 퍼지 제어기의 안정화 조건을 만족시키는 제어 이득을 전략 기반 유전 알고리즘을 사용하여 동정한다 전략 기반 유전 알고리즘은 제어기의 안정화 조건을 만족시키는 해를 찾기 위해 전략적으로 교차와 돌연변이를 변화시킨다. 전력 기반 유전 알고리즘은 제어기의 안정화 조건을 만족시키는 해를 찾기 위해 전략적으로 교차와 돌연변이 영역을 변화시킴으로서 빠르게 해를 찾는다. 최종적으로 모의 실험을 통해 제안된 기법의 우수성을 확인하였다.
본 연구에서는 현재 가뭄을 관측하는데 주로 이용되는 가뭄지수의 단점 등을 보완하고자 가뭄에 관련되는 식생지수를 연계한 공간해상도 높은 가뭄지수를 제시하였다. 우리나라 지상관측을 통해 산출할 수 있는 PDSI(Palmer Drought Severity Index)와 SPI(Standardized Precipitation Index) 같은 가뭄지수는 기온과 강수량 등의 기후자료만을 이용하여 산정할 수 있다. 두 가뭄지수는 관측하기 어려운 가뭄의 시기와 심도를 설명하고자 여러 연구를 통해 개발한 지수이지만, 두 가뭄지수만을 가지고 우리나라 전역의 가뭄의 공간적인 분포를 설명하기에는 다소 무리가 있다. PDSI의 경우 강수량과 기온과 토양의 수분함유량을 가지고 산출하는데, 전 관측지점을 똑같은 토양수분함유량을 가지고 있다는 가정 하에 계산되고, SPI의 경우 강수량만을 이용하여 산정한다. PDSI의 경우 과거의 가뭄의 정도를 판단하는데 매우유용하다고 알려져 있다. 하지만, 현재의 가뭄정도를 나타내는 데는 문제를 가지고 있고, SPI의 경우는 누적강수량을 가지고 시간단위로 계산한다는 점에서 다양한 가뭄의 정도를 예측할 수 있지만, 입력 자료로 강수량만 들어간다는 점에서 약점을 가진다. 이런 기후지수만을 이용한 가뭄정보 생산이 공간정보를 구현하는데 한계를 가지는 문제점을 개선하고자 가뭄에 직간접적으로 관련이 있는 보다 세밀한 공간정보를 가진 식생, 토지이용, 고도 등의 자료와 기후정보로부터 산정된 가뭄지수간의 관계를 분석하였다. 나아가 기존의 기후지수보다 고해상도를 가진 위성의 정규식생지수(NDVI; Normalized Difference Vegetation Index)와 같은 식생지수를 이용하여 기존보다 더 향상된 해상도의 가뭄지수를 산정하고자 하였다. 우리나라 지상관측소 76개 지점 중에 MODIS(Moderate Resolution Imaging Spectroradiometer) 정규식생지수 자료와의 관계를 분석하고자 자료의 보유기간이 짧은 지점과 섬지점 등을 제외한 57개 지점을 선정하고, 연구기간동안의 강수량과 기온자료를 이용하여 PDSI와 SPI를 산출하였다. PDSI와 SPI자료를 고해상도 가뭄지수 산정의 기본 변수로 사용하기 위하여 역거리가중평균법을 이용한 연구기간동안의 한반도 지역 PDSI와 SPI 가뭄지수 지도를 생산하였다. 각각의 가뭄지수와 식생 상태를 나타내는 NDVI와의 상관특성과 계절 변화에 따른 변화특성을 분석하고, CART(Classification and Regression Trees) 알고리즘을 이용하여, 지상 자료만을 사용한 가뭄지수가 가지는 시공간적 변화 특성 제시에 대한 문제점을 개선한 보다 해상도가 높은 조합가뭄지수를 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.