• Title/Summary/Keyword: CAPWAP

Search Result 23, Processing Time 0.023 seconds

Dynamic analyses and field observations on piles in Kolkata city

  • Chatterjee, Kaustav;Choudhury, Deepankar;Rao, Vansittee Dilli;Mukherjee, S.P.
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.415-440
    • /
    • 2015
  • In the present case study, High Strain Dynamic Testing of piles is conducted at 3 different locations of Kolkata city of India. The raw field data acquired is analyzed using Pile Driving Analyzer (PDA) and CAPWAP (Case Pile Wave Analysis Programme) computer software and load settlement curves along with variation of force and velocity with time is obtained. A finite difference based numerical software FLAC3D has been used for simulating the field conditions by simulating similar soil-pile models for each case. The net pile displacement and ultimate pile capacity determined from the field tests and estimated by using numerical analyses are compared. It is seen that the ultimate capacity of the pile computed using FLAC3D differs from the field test results by around 9%, thereby indicating the efficiency of FLAC3D as reliable numerical software for analyzing pile foundations subjected to impact loading. Moreover, various parameters like top layers of cohesive soil varying from soft to stiff consistency, pile length, pile diameter, pile impedance and critical height of fall of the hammer have been found to influence both pile displacement and net pile capacity substantially. It may, therefore, be suggested to include the test in relevant IS code of practice.

Applicability of CPT-based Toe Bearing Capacity of Driven PHC Piles (PHC 항타말뚝에 대한 CPT 선단지지력 공식의 적용성 분석)

  • Le, Chi-Hung;Kim, Sung-Ryul;Chung, Sung-Gyo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.792-798
    • /
    • 2008
  • CPT 시험은 지난 30여년 동안 지반조사 분야에서 널리 이용되어 왔다. CPT 콘의 근입은 항타말뚝의 근입방법과 유사하기 때문에, CPT 콘의 선단저항력을 이용하여 말뚝의 지지력을 산정하려는 연구가 많이 수행되어 왔다. 본 연구의 목적은 기존에 제안된 CPT 선단지지력 공식의 적용성을 분석하는 것이다. 이를 위해 낙동강 하구 대심도 연약지반에서 수행된 항타 PHC 말뚝에 대한 총 172개의 PDA 시험자료와 80개소의 CPT 자료를 수집하였다. PDA시험의 CAPWAP분석에서 얻어진 선단지지력과 각 CPT 지지력 공식에서 산정된 선단지지력을 비교함으로써 각 공식의 적용성을 분석하였다. 분석에 이용된 CPT 지지력 공식은 Aoki 방법, Meyerhof 방법, Penpile 방법, Philpponnat 방법, LCPC 방법, Schmertmann 방법, Zhou 방법, ICP 방법, Eslami & Fellenius 방법, 그리고 UWA-05 방법의 총 10가지이다. 분석결과, Aoki 방법, Phillipponnat 방법, ICP 방법 그리고 LCPC 방법 순으로 그 적용성이 높은 것으로 나타났다.

  • PDF

Analytical Study on the Appropriateness of Design Formula and Possibility of Improving Bearing Capacity of Bored Pile (매입말뚝의 설계식 적정성 및 지지력 상향 가능성 분석 연구)

  • Park, Jong-Bae;Lee, Bum-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.6 no.3
    • /
    • pp.139-145
    • /
    • 2015
  • To improve the pile design efficiency(design bearing capacity/the strength of materials) from 70 percent(160tonf) to 80 percent(190tonf), this paper analysed the existing pile loading test data and performed the precise dynamic loading test and Bi-directional loading test for the first time in Korea. Analysis result of the existing dynamic loading test data by Davisson method showed that bearing capacity of piles penetrated at weathered rock stratum(N=50/15) exceeded 190tonf. But the analysis result by CAPWAP method showed that piles less than the target bearing capacity were 40% due to the lack of impact energy. To get the target bearing capacity from the dynamic loading test, using the hammer over 6tonf to trigger the enough impact energy is necessary. Allowable bearing capacty of Bi-directional static loading test by Davisson method was 260.0~335tonf(ave. 285.3tonf) and exceeded overwhelmingly the target capacity. And this exceeded the bearing capacity of precise dynamic loading test(ave. 202.3tonf) performed on the same piles over 40%. The difference between the capacity of Bi-directional loading test and dynamic loading test was caused by the insufficient impact energy during dynamic loading test and increase by interlocking effect by near piles during Bi-directional static loading test.

Prediction of End Bearing Capacity for Pre-Bored Steel Pipe Piles Using Instrumented Spt Rods (SPT 에너지효율 측정 롯드를 이용한 매입말뚝의 선단지지력 예측)

  • Nam, Moon S.;Park, Young-Ho;Park, Yong-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.105-111
    • /
    • 2013
  • The standard penetration test (SPT) has been widely used because of its usability, economy, and many correlations with soil properties among other factors. In SPT, hammer energy is an important factor to evaluate and calibrate N values. To measure hammer energy, an instrumented SPT rod was developed considering that stress waves transferring on rods during SPT driving are the same as stress waves transferring on piles due to pile driving. Using this idea, an instrumented SPT rod with a pile driving analyzer was applied as a pile capacity prediction tool in this study. In order to evaluate this method, SPT and dynamic cone tests with the instrumented SPT rod were conducted and also 2 pile load tests were performed on pre-bored steel pipe piles at the same test site. End bearings were predicted by CAPWAP analysis on force and velocity waves from dynamic cone penetration tests and SPT. Comparing these predicted end bearings with static pile load tests, a new prediction method of the end bearing capacity using the instrumented SPT rod was proposed.

A Proposal for the Proper Application of Dynamic Pile Loading Tests (동재하시험의 올바른 적용)

  • 홍헌성;김성회;전영석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.233-240
    • /
    • 1999
  • Locally PDA has been utilized mainly as an alternative way of preforming pile loading tests. More than 30 units of PDA's are believed to be operating in Korea. It is true that PDA can provide useful information regarding bearing capacity, integrity, hammer performance, time effect, etc. However it is also true that inappropriate execution of PDA could result in harmful effects for the safety of the superstructure or causing delay in the construction process. In this paper several cases of inappropriate application of PDA are introduced. Most of the problems seemed to be caused by unqualified personnel who carry out testing and analysis. From the evaluation of the cases a proposal has been made for the proper application of PDA.

  • PDF

A report on the problems associated with PDA testing in Korea (국내 동재하시험의 문제점에 대한 보고)

  • Lee, Myung-Whan;Hong, Hun-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1259-1268
    • /
    • 2006
  • Dynamic pile loading test using PDA was introduced in 1994. Because of its economy and relatively easy and simple procedure, the number of PDA application increased quite rapidly. It is assumed that more than 10,000 dynamic pile loading tests are done annually. While the number of testing increases sharply, the quality of the tests does not really improve but the number of serious problems due to improper testing increases. According to the limited experiences of the authors, the common problems found in most of the cases are caused by ignorance of the most basic and fundamental requirements. In this paper some case histories are explained and the proposed solution is introduced.

  • PDF

A Study on the Allowable Bearing Capacity of Pile by Driving Formulas (각종 항타공식에 의한 말뚝의 허용지지력 연구)

  • Lee, Jean-Soo;Chang, Yong-Chai;Kim, Yong-Keol
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.106-111
    • /
    • 2002
  • The estimation of pile bearing capacity is important since the design details are determined from the result. There are numerous ways of determining the pile design load, but only few of them are chosen in the actual design. According to the recent investigation in Korea, the formulas proposed by Meyerhof based on the SPT N values are most frequently chosen in the design stage. In the study, various static and dynamic formulas have been used in predicting the allowable bearing capacity of a pile. Further, the reliability of these formulas has been verified by comparing the perdicted values with the static and dynamic load test measurements. Also, in most cases, these methods of pile bearing capacity determination do not take the time effect consideration, the actual allowable load as determined from pile load test indicates severe deviation from the design value. The principle results of this study are summarized as follows : As a result of estimate the reliability in criterion of the Davisson method, t was showed that Terzaghi & Peck >Chin>Meyerhof > Modified Meyerhof method was the most reliable method for the prediction of bearing capacity. Comparisons of the various pile-driving formulas showed that Modified Engineering News was the most reliable method. However, a significant error happened between dynamic bearing capacity equation was judged that uncertainty of hammer efficiency, characteristics of variable, time effect etc... was not considered. As a result of considering time effect increased skin friction capacity higher than end bearing capacity. It was found out that it would be possible to increase the skin friction capacity 1.99 times higher than a driving. As a result of considering 7 day's time effect, it was obtained that Engineering news, Modified Engineering News, Hiley, Danish, Gates, CAPWAP(CAse Pile Wave Analysis Program) analysis for relation, repectively, $Q_{u(Restrike)} / Q_{u(EOID)} = 0.98t_{0.1}$ , $0.98t_{0.1}$, $1.17t_{0.1}$, $0.88t_{0.1}$, $0.89t_{0.1}$, $0.97t_{0.1}$.

Case Study of Comparative Analysis between Static and Dynamic Loading Test of PHC Pile (굴착 후 타입된 PHC 말뚝의 재하시험 결과 비교분석 사례 연구)

  • Kim, Jaehong;Yea, Geuguwen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.13-23
    • /
    • 2013
  • In the west coastal soft ground, the static and dynamic loading tests for PHC piles which were executed using light driving without injecting cement milk were carried out and the correlation was analyzed. Initial dynamic loading test used hydraulic hammer(ram weight 70kN) and final average penetration effect presented 3.0 to 8.0mm at 0.8m drop. Then final allowable bearing capacity using CAPWAP presented 776.4 to 1,053.6kN a pile. The static loading tests which were performed at the other piles loaded 200% of the design load dividing by eight phases. As the result, total settlement was 15.97 to 16.38mm and residual settlement was 4.48 to 5.38mm, but both yielding and ultimate load can't be estimated. Therefore, allowable bearing capacity was determined larger than 1,200kN a pile regarding maximum test load as yielding load. Thus, it showed that allowable bearing capacity of the dynamic loading test was larger than static loading test in 1.54 to 1.14 times.

Performance Evaluation of Pile-Filling Material Using High Calcium Ash by Field Loading Test (고칼슘 연소재를 이용한 매입말뚝 주면고정액의 현장 재하시험을 통한 성능평가)

  • Seo, Se-Kwan;Kim, You-Seong;Lim, Yang-Hyun;Jo, Dae-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.17-24
    • /
    • 2018
  • In this study, static load test and dynamic load test were performed to evaluate pile-filling material (ZA-Soil) of soil-cement injected precast pile method which was developed by using the ash of circulating fluidized boiler as a stimulant for alkali activation reaction of blast furnace slag. As a result of the static load test, the allowable bearing capacity of pile was 1,350 kN, which was the same as the result of using ordinary portland cement. And total settlement was 6.97 mm, and net settlement was 1.48 mm. These are similar to the total settlement, 7.825 mm, and net settlement, 2.005 mm of ordinary portland cement. As a result of the dynamic load test and CAPWAP analysis, the skin friction was 375.0 kN, the end bearing capacity was 3,045.9 kN, and the allowable bearing capacity was 1,368.36 kN. These results are similar to the results of using ordinary portland cement as pile-filling material.

A Study on the Allowable Bearing Capacity of Pile by Driving Formulas (각종 항타공식에 의한 말뚝의 허용지지력 연구)

  • 이진수;장용채;김용걸
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.197-203
    • /
    • 2002
  • The estimation of pile bearing capacity is important since the design details are determined from the result. There are numerous ways of determining the pile design load, but only few of them are chosen in the actual design. According to the recent investigation in Korea, the formulas proposed by Meyerhof based on the SPT N values are most frequently chosen in the design stage. In the study, various static and dynamic formulas have been used in predicting the allowable bearing capacity of a pile. Further, the reliability of these formulas has been verified by comparing the perdicted values with the static and dynamic load test measurements. Also in cases, these methods of pile bearing capacity determination do not take the time effect consideration, the actual allowable load as determined from pile load test indicates severe deviation from the design value. The principle results of this study are summarized as follows : A a result of estimate the reliability in criterion of the Davisson method, in was showed that Terzaghi & Peck > Chin > Meyerhof > Modified Meyerhof method was the most reliable method for the prediction of bearing capacity. Comparisons of the various pile-driving formulas showed that Modified Engineering News was the most reliable method. However, a significant error happened between dynamic bearing capacity equation was judged that uncertainty of hammer efficiency, characteristics of variable , time effect etc... was not considered. As a result of considering time effect increased skin friction capacity higher than end bearing capacity. It was found out that it would be possible to increase the skin friction capacity 1.99 times higher than a driving. As a result of considering 7 day's time effect, it was obtained that Engineering News. Modified Engineering News. Hiley, Danish, Gates, CAPWAP(CAse Pile Wave Analysis Program ) analysis for relation, respectively, $Q_{u(Restrike)}$ $Q_{u(EOID)}$ = 0.971 $t_{0.1}$, 0.968 $t_{0.1}$, 1.192 $t_{0.1}$, 0.88 $t_{0.1}$, 0.889 $t_{0.1}$, 0.966 $t_{0.1}$, 0.889 $t_{0.1}$, 0.966 $t_{0.1}$

  • PDF