• Title/Summary/Keyword: CANDU-6

Search Result 143, Processing Time 0.03 seconds

Effect of DUPIC Cycle on CANDU Reactor Safety Parameters

  • Mohamed, Nader M.A.;Badawi, Alya
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1109-1119
    • /
    • 2016
  • Although, the direct use of spent pressurized water reactor (PWR) fuel in CANda Deuterium Uranium (CANDU) reactors (DUPIC) cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by $UO_2$ enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1) the power distribution amongst the fuel elements of the bundle; (2) the coolant void reactivity; and (3) the reactor point-kinetics parameters.

Determination of burnup limit for CANDU 6 fuel using Monte-Carlo method

  • Lee, Eun-ki
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.901-910
    • /
    • 2021
  • KHNP recently has obtained the approval for the commercialization of the modified 37-element (or 37 M) fuel bundle and now is loading the 37 M fuel bundles in CANDU-6 reactors in KOREA. One of the main issues for approval was the burnup limit. Due to CANDU design and neutronic characteristics, there was no specific burnup restriction of a fuel bundle. The absence of a burnup limit does not mean that a fuel bundle can stay in the CANDU reactor without a time limit. However, the regulator requested traditional design values as well as the burnup limit reflecting the computer code uncertainty. The method for the PWR burnup limit was not applied to the CANDU fuel bundle. Since there was no approved methodology to build the burnup limit with uncertainties, KHNP introduced a Monte-Carlo method coupled with a 95/95 approach to determine the conservative burnup limit from the viewpoint of the centerline temperature, internal pressure, strain measurement deviation. Moreover, to consider the uncertainties of various computing models, a converted power uncertainty was introduced. This paper presents the methodology and puts forward the limits on burnup, evaluated for each of the existing and modified fuel bundles, in consideration of the pressure tube aging condition.

An Investigation of Transient Responses of CANDU-6 PHTS Using DSNP (DSNP Language를 이용한 CANDU-6 PHTS 과도상태)

  • 전용준;박지원;오세기;정근모
    • Journal of Energy Engineering
    • /
    • v.4 no.1
    • /
    • pp.103-114
    • /
    • 1995
  • 본 연구는 원자력발전소용 시뮬레이션 언어인 DSNP(Dynamic Simulator for Nuclear Power-plants)언어를 이용하여 CANDU-6 발전소 운전 모사 프로그램을 구성함으로써 핵심계통인 1차 냉각재 계통(PHTS)과 2차 계통 일부가 정상 및 과도조건에서 보일 수 있는 운전 상태를 연구하였다. DSNP 프로그램은 원자로심과 증기발생기에서의 열전달 모델, 열수송계통 펌프 모델 및 가압기 열수력 모델을 포함하고 있으며, 파이프(pipe)라는 단위 구성체를 이용하여 1차 냉각재계통을 노드화하여 계통 모사가 실현된다. 정상상태 100% 전출력 운전시 대표적인 운전변수를 기준으로 DSNP 결과와 CANDU-6 발전소 설계치를 비교해 본 결과 서로 매우 근사한 값을 나타내었으며, 이는 과도상태 모사의 초기조건으로 합당한 것으로 판단된다. 본 연구에서 선택된 과도상태 모사시 DSNP 프로그램은 매우 안정된 최종정상상태를 얻음에 따라 원자로의 기계 물리학적 변화를 합리적으로 모사하고 있음을 알 수 있었다. 최종 정상상태 회귀 이전의 동적 거동을 원자로 설계자료인 예비 안전성 평가 보고서(PSAR)와 비교한 결과 단기적 거동은 PSAR 결과와 다소 다른 점이 있었으나 전체적으로 합리적인 운전변수 값을 얻을 수 있었다. 단기적 거동에 대한 입증은 원자로 운전 자료를 통하여 가능할 것으로 사료된다. 이상과 같이 본 연구를 통해 구성한 DSNP 프로그램은 보완 및 개선의 여지가 있으나 현재의 수준으로도 CANDU-6 발전소의 일부 과도상태 모사가 가능한 것으로 판단된다.

  • PDF

Fuel Management Simulation for CANFLEX-RU in CANDU 6

  • Jeong, Chang-Joon;Suk, Ho-Chun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.147-151
    • /
    • 1997
  • Fuel management simulation have been performed for CANFLEX-0.9% RU fuel in the CANDU 6 reactor. In this study, the bi-directional 4-bundle shift fuelling scheme was assumed The lattice cell and time-average calculation were carried out. The refuelling simulation calculations were performed for 600 full power days. Time-averaged results show good axial power profile with the CANFLEX-RU fuel. During the simulation period, the maximum channel and bundle power were maintained below the licensing limit of CANDU 6 reactor.

  • PDF

THE IMPACT OF POWER COEFFICIENT OF REACTIVITY ON CANDU 6 REACTORS

  • Kastanya, D.;Boyle, S.;Hopwood, J.;Park, Joo Hwan
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.573-580
    • /
    • 2013
  • The combined effects of reactivity coefficients, along with other core nuclear characteristics, determine reactor core behavior in normal operation and accident conditions. The Power Coefficient of Reactivity (PCR) is an aggregate indicator representing the change in reactor core reactivity per unit change in reactor power. It is an integral quantity which captures the contributions of the fuel temperature, coolant void, and coolant temperature reactivity feedbacks. All nuclear reactor designs provide a balance between their inherent nuclear characteristics and the engineered reactivity control features, to ensure that changes in reactivity under all operating conditions are maintained within a safe range. The $CANDU^{(R)}$ reactor design takes advantage of its inherent nuclear characteristics, namely a small magnitude of reactivity coefficients, minimal excess reactivity, and very long prompt neutron lifetime, to mitigate the demand on the engineered systems for controlling reactivity and responding to accidents. In particular, CANDU reactors have always taken advantage of the small value of the PCR associated with their design characteristics, such that the overall design and safety characteristics of the reactor are not sensitive to the value of the PCR. For other reactor design concepts a PCR which is both large and negative is an important aspect in the design of their engineered systems for controlling reactivity. It will be demonstrated that during Loss of Regulation Control (LORC) and Large Break Loss of Coolant Accident (LBLOCA) events, the impact of variations in power coefficient, including a hypothesized larger than estimated PCR, has no safety-significance for CANDU reactor design. Since the CANDU 6 PCR is small, variations in the range of values for PCR on the performance or safety of the reactor are not significant.

Core Analysis during Transition from 37-Element Fuel to CANFLEX-NU Fuel in CANDU 6

  • Jeong, Chan-Joon;Suk, Ho-Chun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.169-174
    • /
    • 1998
  • An 1200-day time-dependent fuel-management for the transition from 37-element fuel to CANFLEX-NU fuel in a CANDU 6 reactor has been simulated to show the compatibility of the CANFLEX-NU fuel with the reactor operation. The simulation calculation were carried out with the RFSP code, provided by cell averaged hel properties obtained from the POWDERPUFS-V code. The refueling scheme for both fuels was an eight bundle shift art a time. The simulation results show that the maximum channel and bundle powers were maintained below the licence limit of the CANDU 6. This indicates that the CANFLEX-NU fuel bundle is compatible with the CANDU 6 reactor operation during the transition period.

  • PDF