• Title/Summary/Keyword: CANDU Spent fuel

Search Result 73, Processing Time 0.027 seconds

Current Status and Projection of Spent Nuclear Fuel for Geological Disposal System Design (심지층 처분시스템 설계를 위한 사용후핵연료 현황 분석 및 예측)

  • Cho, Dong-Keun;Choi, Jong-Won;Hahn, Pil-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.87-93
    • /
    • 2006
  • Inventories, and characteristics such as dimension, fuel rod array, weight, $^{235}U$ enrichment, and discharge burnup of spent nuclear fuel (SNF) generated from existing and planed nuclear power plants based on National 2nd Basic Plan for Electric Power Demand and Supply were investigated and projected to support geological disposal system design. The historical and projected inventory by the end 2057 is expected to be 20,500 and 14,800MTU for PWR and CANDU spent nuclear fuel, respectively. The quantity of SNF with initial $^{235}U$ enrichment of 4.5 wt.% and below was shown to be 96.5% in total. Average burnup of SNF revealed $\sim36$ GWD/MTU and $\sim40$ GWD/MTU for the period of 1994-1999 and 2000-2003, respectively. It is expected that the average burnup of SNF will be $\sim45$ GWD/MTU at the end of 2000's. From the comprehensive study, it was concluded that the imaginary SNF with $16\times16$ Korean Standard Fuel Assembly, cross section of $21.4cm\times21.4cm$, length of 453cm, mass of 672 kg, initial $^{235}U$ enrichment of 4.5 wt.%, discharge burnup of 55 GWD/MTU could cover almost all SNFs to be produced by 2057.

  • PDF

Estimation of Discharged Amounts of U and Pu Nuclides from the PWR Spent Fuels in Korea (국내 가압 경수형 원자로의 사용후 핵연료에서 잔류하는 U과 Pu핵종의 발생량 추정)

  • Lim, Chae-Jun;Kang, Chang-Sun
    • Nuclear Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.165-169
    • /
    • 1988
  • As a part of tandem fuel cycle feasibility study, the residual U and Pu nuclide contents of PWR spent fuels are computed using ORICEN2 code for each Korea Nuclear Unit and batch to investigate the potential of utilizing them as CANDU fuels. The annual and accumulated discharged amounts of U and Pu nuclides are computed for the PWRs from KNU 1 through KNU 10. The results of computation show that the spent fuels having 0.7-0.8 w/o U-235 are dominant and considerable amounts of fissile Pu are produced. The enrichment of U-235 is less than the expected 0.8-0.9 w/o U-235 since the burnups offered by KEPCO are higher than those of other PWRs.

  • PDF

External Cost Assessment for Nuclear Fuel Cycle (핵연료주기 외부비용 평가)

  • Park, Byung Heung;Ko, Won Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.243-251
    • /
    • 2015
  • Nuclear power is currently the second largest power supply method in Korea and the number of nuclear power plants are planned to be increased as well. However, clear management policy for spent fuels generated from nuclear power plants has not yet been established. The back-end fuel cycle, associated with nuclear material flow after nuclear reactors is a collection of technologies designed for the spent fuel management and the spent fuel management policy is closely related with the selection of a nuclear fuel cycle. Cost is an important consideration in selection of a nuclear fuel cycle and should be determined by adding external cost to private cost. Unlike the private cost, which is a direct cost, studies on the external cost are focused on nuclear reactors and not at the nuclear fuel cycle. In this research, external cost indicators applicable to nuclear fuel cycle were derived and quantified. OT (once through), DUPIC (Direct Use of PWR SF in CANDU), PWR-MOX (PWR PUREX reprocessing), and Pyro-SFR (SFR recycling with pyroprocessing) were selected as nuclear fuel cycles which could be considered for estimating external cost in Korea. Energy supply security cost, accident risk cost, and acceptance cost were defined as external cost according to precedent and estimated after analyzing approaches which have been adopted for estimating external costs on nuclear power generation.

A Study on Radiation Safety Evaluation for Spent Fuel Transportation Cask (사용후핵연료 운반용기 방사선적 안전성평가에 관한 연구)

  • Choi, Young-Hwan;Ko, Jae-Hun;Lee, Dong-Gyu;Jung, In-Su
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.375-387
    • /
    • 2019
  • In this study, the radiation dose rates for the design basis fuel of 360 assemblies CANDU spent nuclear fuel transportation cask were evaluated, by measuring radiation source terms for the design basis fuel of a pressurized heavy water reactor. Additionally, radiological safety evaluation was carried out and the validity of the results was determined by radiological technical standards. To select the design basis fuel, which was the radiation source term for the spent fuel transportation cask, the design basis fuels from two spent fuel storage facilities were stored in a spent fuel transportation cask operating in Wolsung NPP. The design basis fuel for each transportation and storage system was based on the burnup of spent fuel, minimum cooling period, and time of transportation to the intermediate storage facility. A burnup of 7,800 MWD/MTU and a minimum cooling period of 6 years were set as the design basis fuel. The radiation source terms of the design basis fuel were evaluated using the ORIGEN-ARP computer module of SCALE computer code. The radiation shielding of the cask was evaluated using the MCNP6 computer code. In addition, the evaluation of the radiation dose rate outside the transport cask required by the technical standard was classified into normal and accident conditions. Thus, the maximum radiation dose rates calculated at the surface of the cask and at a point 2 m from the surface of the cask under normal transportation conditions were respectively 0.330 mSv·h-1 and 0.065 mSv·h-1. The maximum radiation dose rate 1 m from the surface of the cask under accident conditions was calculated as 0.321 mSv·h-1. Thus, it was confirmed that the spent fuel cask of the large capacity heavy water reactor had secured the radiation safety.

Analysis of the Thermal and Structural Stability for the CANDU Spent Fuel Disposal Canister (CANDU 처분용기의 열적-구조적 안정성 평가)

  • Lee, Jong-Youl;Cho, Dong-Geun;Kim, Seong-Gi;Choi, Heui-Joo;Lee, Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.217-224
    • /
    • 2008
  • In deep geological disposal system, the integrity of a disposal canister having spent fuels is very important factor to assure the safety of the repository system. This disposal canister is one element of the engineered barriers to isolate and to delay the radioactivity release from human beings and the environment for a long time so that the toxicity does not affect the environment. The main requirement in designing the deep geological disposal system is to keep the buffer temperature below 100$^{\circ}C$ by the decay heat from the spent fuels in the canister in order to maintain the integrity of the buffer material. Also, the disposal canister can endure the hydraulic pressure in the depth of 500 m and the swelling pressure of the bentonite as a buffer. In this study, new concept of the disposal canister for the CANDU spent fuels which were considered to be disposed without any treatment was developed and the thermal stability and the structural integrity of the canister were analysed. The result of the thermal analysis showed that the temperature of the buffer was 88.9$^{\circ}C$ when 37 years have passed after emplacement of the canister and the spacings of the disposal tunnel and the deposition holes were 40 m and 3 m, respectively. In the case of structural analysis, the result showed that the safety factors of the normal and the extreme environment were 2.9 and 1.33, respectively. So, these results reveal that the canister meets the thermal and the structural requirements in the deep geological disposal system.

  • PDF

Current Status and Characterization of CANDU Spent Fuel for Geological Disposal System Design (심지층 처분시스템 설계를 위한 중수로 사용후핵연료 현황 및 선원항 분석)

  • Cho, Dong-Keun;Lee, Seung-Woo;Cha, Jeong-Hun;Choi, Jong-Won;Lee, Yang;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.2
    • /
    • pp.155-162
    • /
    • 2008
  • Inventories to be disposed of, reference turnup, and source terms for CANDU spent fuel were evaluated for geological disposal system design. The historical and projected inventory by 2040 is expected to be 14,600 MtU under the condition of 30-year lifetime for unit 1 and 40-year lifetime for other units in Wolsong site. As a result of statistical analysis for discharge burnup of the spent fuels generated by 2007, average and stand deviation revealed 6,987 MWD/MtU and 1,167, respectively. From this result, the reference burnup was determined as 8,100 MWD/MtU which covers 84% of spent fuels in total. Source terms such as nuclide concentration for a long-term safety analysis, decay heat, thermo-mechanical analysis, and radiation intenity and spectrum was characterized by using ORIGEN-ARP containing conservativeness in the aspect of decay heat up to several thousand years. The results from this study will be useful for the design of storage and disposal facilities.

  • PDF

Intelligent Nuclear Material Surveillance System for DUPIC Facility (DUPIC 시설의 지능형 핵물질 감시시스템)

  • 송대용;이상윤;하장호;고원일;김호동
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.406-410
    • /
    • 2003
  • DUPIC Fuel Development Facility(DFDF) is the facility to fabricate CANDU-type fuel from spent PWR fuel material without any separation of fissile elements and fission products. Unattended continuous surveillance systems for safeguards of nuclear facility result in large amounts of image and radiation data, which require much time and effort to inspect. Therefore, it is necessary to develop system that automatically pinpoints and diagnoses the anomalies from data. In this regards, this paper presents a novel concept of the continuous surveillance system that integrates visual image and radiation data by the use of neural networks. This surveillance system is operating for safeguards of the DFDF in KAERI.

  • PDF

Technology Assessment of the Repository Alternatives to Establish a Reference HLW Disposal Concept

  • Choi, Jong-Won;Choi, Young-Sung;Kwon, Sang-Ki;Kuh, Jung-Eui;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.83-100
    • /
    • 1999
  • As disposal packaging concepts of spent fuels generated from the domestic NPP, two types, one is to package PWR and CANDU spent fuels in different containers and the other is to package them together, were proposed. The configuration of the containers and the layout of underground repository, such as the container spacing and the deposition tunnel spacing, were developed. The layout of underground repository satisfies the thermal constraint of the bentonite buffer surrounding disposal container, which should be lower than $100^{\circ}C$ in order to keep the physical and chemical properties of bentonite From the spent fuel packaging concepts and container emplacement methods, seven options were developed. With a typical pair-wise comparison methods, AHP, the most promising disposal concept was selected based on the technology Point of view.

  • PDF