• Title/Summary/Keyword: CAN network

Search Result 19,573, Processing Time 0.049 seconds

OPTIMAL DESIGN FOR CAPACITY EXPANSION OF EXISTING WATER SUPPLY SYSTEM

  • Ahn, Tae-Jin;Lyu, Heui-Jeong;Park, Jun-Eung;Yoon, Yong-Nam
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.63-74
    • /
    • 2000
  • This paper presents a two- phase search scheme for optimal pipe expansion of expansion of existing water distribution systems. In pipe network problems, link flows affect the total cost of the system because the link flows are not uniquely determined for various pipe diameters. The two-phase search scheme based on stochastic optimization scheme is suggested to determine the optimal link flows which make the optimal design of existing pipe network. A sample pipe network is employed to test the proposed method. Once the best tree network is obtained, the link flows are perturbed to find a near global optimum over the whole feasible region. It should be noted that in the perturbation stage the loop flows obtained form the sample existing network are employed as the initial loop flows of the proposed method. It has been also found that the relationship of cost-hydraulic gradient for pipe expansion of existing network affects the total cost of the sample network. The results show that the proposed method can yield a lower cost design than the conventional design method and that the proposed method can be efficiently used to design the pipe expansion of existing water distribution systems.

  • PDF

An Implementation of the Network Module Supporting u-QoS on Home Network and USN Signal Processing (홈 네트워크와 USN 신호 처리를 위한 u-QoS 지원 네트워크 모듈 개발)

  • Shin, Jae-Heung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.155-160
    • /
    • 2011
  • IPTV functions not only as media player that does play the broadcasting industry's contents, also as the gateway is guaranteed of QoS(Quality of Service). This is for free contents-sharing that device stores contents using home network circumstance, and is for watching with seamless network service. Also this have required next QoS model that can handle stably as it may contain more data of the small computing device in next generation home system. We need ubiquitous-oriented QoS's design and development project that focuses on internal and external media service, not the existing QoS nor one-sided QoS of media sevice industry. This paper focuses on network module development. This supports IPTV in media industry and two-way capability of QoS highlighting multimedia service in network industry. In additional, this can handle stably the multiplex signal of USN/RFID as the representative ubiquitous and home network that services high-speed wire and wireless interface, and support the seamless u-QoS.

Transmission of Moving Image on the Internet Using Wavelet Transform and Neural Network (웨이블릿변환과 신경회로를 이용한 동영상의 실시간 전송)

  • Kim, Jeong-Ha;Lee, Hak-No;Nam, Boo-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1077-1081
    • /
    • 2004
  • In this Paper we discuss an algorithm for a real-time transmission of moving color image on the TCP/IP network using wavelet transform and neural network. The Image frames received from the camera are two-level wavelet-transformed in the server, and are transmitted to the client on the network. Then, the client performs the inverse wavelet-transform using only the received pieces of each image frame within the prescribed time limit to display the moving images. When the TCP/IP network is busy, only a fraction of each image frame will be delivered. When the line is free, the whole frame of each image will be transferred to the client. The receiver warns the sender of the condition of traffic congestion in the network by sending a special short frame for this specific purpose. The sender can respond to this information of warning by simply reducing the data rate which is adjusted with a neural network or fuzzy logic. In this way we can send a stream of moving images adaptively adjusting to the network traffic condition.

A Study on Complexity Theory of e-Business Domain - A Focused on Strategic Alliance Modeling Using Social Network - (e비즈니스 분야에서의 복잡계론 접목에 관한 연구 -사회연결망을 활용한 전략적 제휴모형을 중심으로-)

  • Park, Ki-Nam;Lee, Moon-Noh
    • The Journal of Information Systems
    • /
    • v.18 no.3
    • /
    • pp.47-70
    • /
    • 2009
  • Social network is one of the representative analytical method of the complexity theory and this research analyzed various and unique strategic alliance model of e-business domain using social network technique. A lot of small and medium firms of e-business field had developed many useful type of strategic alliances for the firms tried to maximize the effect of advertisement, marketing and to make up for their weak points and to compete with huge company with capital strength long before. But it is too rare to analyze the structure of the firm networks and to study the evolution and extension of business model considered the role of each company in the network. Social network analysis helps each firm's network easily visualized and completely modelized. Additionally, this paper cries to analyze the relationship between the role of hub and broke in the firm networks for strategic alliance, and financial performance. We demonstrate the firm with finer business model to the business environment can make higher financial performance. This implies that the firm that can create new finer business model, will lead the network of e-business firms and evolve the industry of e-business.

An Adaptive Power-Controlled Routing Protocol for Energy-limited Wireless Sensor Networks

  • Won, Jongho;Park, Hyung-Kun
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.135-141
    • /
    • 2018
  • Wireless sensor networks (WSN) are composed of a large number of sensor nodes. Battery-powered sensor nodes have limited coverage; therefore, it is more efficient to transmit data via multi-hop communication. The network lifetime is a crucial issue in WSNs and the multi-hop routing protocol should be designed to prolong the network lifetime. Prolonging the network lifetime can be achieved by minimizing the power consumed by the nodes, as well as by balancing the power consumption among the nodes. A power imbalance can reduce the network lifetime even if several nodes have sufficient (battery) power. In this paper, we propose a routing protocol that prolongs the network lifetime by balancing the power consumption among the nodes. To improve the balance of power consumption and improve the network lifetime, the proposed routing scheme adaptively controls the transmission range using a power control according to the residual power in the nodes. We developed a routing simulator to evaluate the performance of the proposed routing protocol. The simulation results show that the proposed routing scheme increases power balancing and improves the network lifetime.

On Designing a Control System Using Dynamic Multidimensional Wavelet Neural Network (동적 다차원 웨이브릿 신경망을 이용한 제어 시스템 설계)

  • Cho, Il;Seo, Jae-Yong;Yon, Jung-Heum;Kim, Yong-Taek;Jeon, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.22-27
    • /
    • 2000
  • In this paper, new neural network called dynamic multidimensional wavelet neural network (DMWNN) is proposed. The resulting network from wavelet theory provides a unique and efficient representation of the given function. Also the proposed DMWNN have ability to store information for later use. Therefore it can represent dynamic mapping and decreases the dimension of the inputs needed for network. This feature of DMWNN can compensate for the weakness of diagonal recurrent neural network(DRNN) and feedforward wavelet neural network(FWNN). The efficacy of this type of network is demonstrated through experimental results.

  • PDF

A Study of Time Synchronization Methods for IoT Network Nodes

  • Yoo, Sung Geun;Park, Sangil;Lee, Won-Young
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.109-112
    • /
    • 2020
  • Many devices are connected on the internet to give functionalities for interconnected services. In 2020', The number of devices connected to the internet will be reached 5.8 billion. Moreover, many connected service provider such as Google and Amazon, suggests edge computing and mesh networks to cope with this situation which the many devices completely connected on their networks. This paper introduces the current state of the introduction of the wireless mesh network and edge cloud in order to efficiently manage a large number of nodes in the exploding Internet of Things (IoT) network and introduces the existing Network Time Protocol (NTP). On the basis of this, we propose a relatively accurate time synchronization method, especially in heterogeneous mesh networks. Using this NTP, multiple time coordinators can be placed in a mesh network to find the delay error using the average delay time and the delay time of the time coordinator. Therefore, accurate time can be synchronized when implementing IoT, remote metering, and real-time media streaming using IoT mesh network.

NUND: Non-Uniform Node Distribution in Cluster-based Wireless Sensor Networks

  • Ren, Ju;Zhang, Yaoxue;Lin, Xiaodong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2302-2324
    • /
    • 2014
  • Cluster-based wireless sensor network (WSN) can significantly reduce the energy consumption by data aggregation and has been widely used in WSN applications. However, due to the intrinsic many-to-one traffic pattern in WSN, the network lifetime is generally deteriorated by the unbalanced energy consumption in a cluster-based WSN. Therefore, energy efficiency and network lifetime improvement are two crucial and challenging issues in cluster-based WSNs. In this paper, we propose a Non-Uniform Node Distribution (NUND) scheme to improve the energy efficiency and network lifetime in cluster-based WSNs. Specifically, we first propose an analytic model to analyze the energy consumption and the network lifetime of the cluster-based WSNs. Based on the analysis results, we propose a node distribution algorithm to maximize the network lifetime with a fixed number of sensor nodes in cluster-based WSNs. Extensive simulations demonstrate that the theoretical analysis results determined by the proposed analytic model are consistent with the simulation results, and the NUND can significantly improve the energy efficiency and network lifetime.

A Network Coding Mechanism Minimizing Congestion of Lossy Wireless Links (손실이 있는 무선 링크에서 혼잡을 최소화하는 네트워크 코딩 기법)

  • Oh, Hayoung;Lim, Sangsoon
    • Journal of KIISE:Information Networking
    • /
    • v.41 no.4
    • /
    • pp.186-191
    • /
    • 2014
  • Previous work only focuses on a maximization of network coding opportunity since it can reduce the number of packets in network system. However, it can make congestion in a relay node as each source node may transmit each packet with the maximum transmission rate based on the channel qualities. Therefore, in this paper, we propose CmNC (Congestion minimized Network Coding over unreliable wireless links) performing opportunistic network coding to guarantee the network coding gain with the consideration of the congestion and channel qualities. The relay node selects the best network code set based on the objective function for reducing the packet loss and congestion via a dynamic programming. With Qualnet simulations, we show CmNC is better up to 20% than the previous work.

Cross Layer Optimal Design with Guaranteed Reliability under Rayleigh block fading channels

  • Chen, Xue;Hu, Yanling;Liu, Anfeng;Chen, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3071-3095
    • /
    • 2013
  • Configuring optimization of wireless sensor networks, which can improve the network performance such as utilization efficiency and network lifetime with minimal energy, has received considerable attention in recent years. In this paper, a cross layer optimal approach is proposed for multi-source linear network and grid network under Rayleigh block-fading channels, which not only achieves an optimal utility but also guarantees the end-to-end reliability. Specifically, in this paper, we first strictly present the optimization method for optimal nodal number $N^*$, nodal placement $d^*$ and nodal transmission structure $p^*$ under constraints of minimum total energy consumption and minimum unit data transmitting energy consumption. Then, based on the facts that nodal energy consumption is higher for those nodes near the sink and those nodes far from the sink may have remaining energy, a cross layer optimal design is proposed to achieve balanced network energy consumption. The design adopts lower reliability requirement and shorter transmission distance for nodes near the sink, and adopts higher reliability requirement and farther transmission distance for nodes far from the sink, the solvability conditions is given as well. In the end, both the theoretical analysis and experimental results for performance evaluation show that the optimal design indeed can improve the network lifetime by 20-50%, network utility by 20% and guarantee desire level of reliability.