• Title/Summary/Keyword: CAN network

Search Result 19,573, Processing Time 0.045 seconds

Analysis on Dynamics of Korea Startup Ecosystems Based on Topic Modeling (토픽 모델링을 활용한 한국의 창업생태계 트렌드 변화 분석)

  • Heeyoung Son;Myungjong Lee;Youngjo Byun
    • Knowledge Management Research
    • /
    • v.23 no.4
    • /
    • pp.315-338
    • /
    • 2022
  • In 1986, Korea established legal systems to support small and medium-sized start-ups, which becomes the main pillars of national development. The legal systems have stimulated start-up ecosystems to have more than 1 million new start-up companies founded every year during the past 30 years. To analyze the trend of Korea's start-up ecosystem, in this study, we collected 1.18 million news articles from 1991 to 2020. Then, we extracted news articles that have the keywords "start-up", "venture", and "start-up". We employed network analysis and topic modeling to analyze collected news articles. Our analysis can contribute to analyzing the government policy direction shown in the history of start-up support policy. Specifically, our analysis identifies the dynamic characteristics of government influenced by external environmental factors (e.g., society, economy, and culture). The results of our analysis suggest that the start-up ecosystems in Korea have changed and developed mainly by the government policies for corporation governance, industrial development planning, deregulation, and economic prosperity plan. Our frequency keyword analysis contributes to understanding entrepreneurial productivity attributed to activities among the networked components in industrial ecosystems. Our analyses and results provide practitioners and researchers with practical and academic implications that can help to establish dedicated support policies through forecast tasks of the economic environment surrounding the start-ups. Korean entrepreneurial productivity has been empowered by growing numbers of large companies in the mobile phone industry. The spectrum of large companies incorporates content startups, platform providers, online shopping malls, and youth-oriented start-ups. In addition, economic situational factors contribute to the growth of Korean entrepreneurial productivity the economic, which are related to the global expansions of the mobile industry, and government efforts to foster start-ups. Our research is methodologically implicative. We employ natural language processes for 30 years of media articles, which enables more rigorous analysis compared to the existing studies which only observe changes in government and policy based on a qualitative manner.

A Study on the Development of Environment Color Checklists for Senior Center Based on Characteristics of the elders (재가노인의 특성을 고려한 경로당 환경색채 체크리스트 개발)

  • Choi, Yerim;Park, Heykyung
    • Korea Science and Art Forum
    • /
    • v.34
    • /
    • pp.327-337
    • /
    • 2018
  • Korea is rapidly becoming an aging society as much as it takes the first place among OECD countries, and as the life expectancy of Korea gradually increases, the proportion of the elders in society increases. Accordingly, the happiness of the elders is contributed to the overall social atmosphere and happiness, however, the lower quality of life of the elders due to physical, psychological and social changes can be developed into social problems such as depression and rising suicide rate. As a result, there is a social interest in improving the quality of life and satisfaction of the elders, and the senior citizen center is receiving renewed attention as a form of welfare facility that can play a pivotal role in the social activities of the elders. In recent years, efforts to improve the environment of the senior citizen center have been made due to the growing role of it, however, there is a controversy over whether the quality of the indoor environment is user-friendly or not due to the limitations of material resources and human resources. It is considered that the quality of the color environment should be improved in the senior citizen center in the way that the color environment is not only an indoor environmental factor which gives high psychological and mental effects to users but also a way to improve the environmental satisfaction at the lowest cost. Previous studies on the facilities related to the elders have been actively carried out, but they were very sporadic and there was very little information about the color environment in the related laws or in the guideline presented by cities. It is necessary to integrate guidelines that are scattered within a comprehensive range without any specific target in order to grasp the current status of the color environment and to properly evaluate it. In addition, considering that the senior citizen center is an important leisure facility for the elders that functions in a residential area with a nationwide network, the results of this study are expected to contribute to the environmental improvement of existing senior citizen center which will be activated in the future by enabling the improvement of psychological satisfaction of the elders.

MDP(Markov Decision Process) Model for Prediction of Survivor Behavior based on Topographic Information (지형정보 기반 조난자 행동예측을 위한 마코프 의사결정과정 모형)

  • Jinho Son;Suhwan Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • In the wartime, aircraft carrying out a mission to strike the enemy deep in the depth are exposed to the risk of being shoot down. As a key combat force in mordern warfare, it takes a lot of time, effot and national budget to train military flight personnel who operate high-tech weapon systems. Therefore, this study studied the path problem of predicting the route of emergency escape from enemy territory to the target point to avoid obstacles, and through this, the possibility of safe recovery of emergency escape military flight personnel was increased. based problem, transforming the problem into a TSP, VRP, and Dijkstra algorithm, and approaching it with an optimization technique. However, if this problem is approached in a network problem, it is difficult to reflect the dynamic factors and uncertainties of the battlefield environment that military flight personnel in distress will face. So, MDP suitable for modeling dynamic environments was applied and studied. In addition, GIS was used to obtain topographic information data, and in the process of designing the reward structure of MDP, topographic information was reflected in more detail so that the model could be more realistic than previous studies. In this study, value iteration algorithms and deterministic methods were used to derive a path that allows the military flight personnel in distress to move to the shortest distance while making the most of the topographical advantages. In addition, it was intended to add the reality of the model by adding actual topographic information and obstacles that the military flight personnel in distress can meet in the process of escape and escape. Through this, it was possible to predict through which route the military flight personnel would escape and escape in the actual situation. The model presented in this study can be applied to various operational situations through redesign of the reward structure. In actual situations, decision support based on scientific techniques that reflect various factors in predicting the escape route of the military flight personnel in distress and conducting combat search and rescue operations will be possible.

A Study on Domestic Applicability for the Korean Cosmic-Ray Soil Moisture Observing System (한국형 코즈믹 레이 토양수분 관측 시스템을 위한 국내 적용성 연구)

  • Jaehwan Jeong;Seongkeun Cho;Seulchan Lee;Kiyoung Kim;Yongjun Lee;Chung Dae Lee;Sinjae Lee;Minha Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.233-246
    • /
    • 2023
  • In terms of understanding the water cycle and efficient water resource management, the importance of soil moisture has been highlighted. However, in Korea, the lack of qualified in-situ soil moisture data results in very limited utility. Even if satellite-based data are applied, the absence of ground reference data makes objective evaluation and correction difficult. The cosmic-ray neutron probe (CRNP) can play a key role in producing data for satellite data calibration. The installation of CRNP is non-invasive, minimizing damage to the soil and vegetation environment, and has the advantage of having a spatial representative for the intermediate scale. These characteristics are advantageous to establish an observation network in Korea which has lots of mountainous areas with dense vegetation. Therefore, this study was conducted to evaluate the applicability of the CRNP soil moisture observatory in Korea as part of the establishment of a Korean cOsmic-ray Soil Moisture Observing System (KOSMOS). The CRNP observation station was installed with the Gunup-ri observation station, considering the ease of securing power and installation sites and the efficient use of other hydro-meteorological factors. In order to evaluate the CRNP soil moisture data, 12 additional in-situ soil moisture sensors were installed, and spatial representativeness was evaluated through a temporal stability analysis. The neutrons generated by CRNP were found to be about 1,087 counts per hour on average, which was lower than that of the Solmacheon observation station, indicating that the Hongcheon observation station has a more humid environment. Soil moisture was estimated through neutron correction and early-stage calibration of the observed neutron data. The CRNP soil moisture data showed a high correlation with r=0.82 and high accuracy with root mean square error=0.02 m3/m3 in validation with in-situ data, even in a short calibration period. It is expected that higher quality soil moisture data production with greater accuracy will be possible after recalibration with the accumulation of annual data reflecting seasonal patterns. These results, together with previous studies that verified the excellence of CRNP soil moisture data, suggest that high-quality soil moisture data can be produced when constructing KOSMOS.

Development of 1ST-Model for 1 hour-heavy rain damage scale prediction based on AI models (1시간 호우피해 규모 예측을 위한 AI 기반의 1ST-모형 개발)

  • Lee, Joonhak;Lee, Haneul;Kang, Narae;Hwang, Seokhwan;Kim, Hung Soo;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.5
    • /
    • pp.311-323
    • /
    • 2023
  • In order to reduce disaster damage by localized heavy rains, floods, and urban inundation, it is important to know in advance whether natural disasters occur. Currently, heavy rain watch and heavy rain warning by the criteria of the Korea Meteorological Administration are being issued in Korea. However, since this one criterion is applied to the whole country, we can not clearly recognize heavy rain damage for a specific region in advance. Therefore, in this paper, we tried to reset the current criteria for a special weather report which considers the regional characteristics and to predict the damage caused by rainfall after 1 hour. The study area was selected as Gyeonggi-province, where has more frequent heavy rain damage than other regions. Then, the rainfall inducing disaster or hazard-triggering rainfall was set by utilizing hourly rainfall and heavy rain damage data, considering the local characteristics. The heavy rain damage prediction model was developed by a decision tree model and a random forest model, which are machine learning technique and by rainfall inducing disaster and rainfall data. In addition, long short-term memory and deep neural network models were used for predicting rainfall after 1 hour. The predicted rainfall by a developed prediction model was applied to the trained classification model and we predicted whether the rain damage after 1 hour will be occurred or not and we called this as 1ST-Model. The 1ST-Model can be used for preventing and preparing heavy rain disaster and it is judged to be of great contribution in reducing damage caused by heavy rain.

Development of an Eye Patch-Type Biosignal Measuring Device to Measure Sleep Quality (수면의 질을 측정하기 위한 안대형 생체신호 측정기기 개발)

  • Changsun Ahn;Jaekwan Lim;Bongsu Jung;Youngjoo Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.5
    • /
    • pp.171-180
    • /
    • 2023
  • The three major sleep disorders in Korea are snoring, sleep apnea, and insomnia. Lack of sleep is the root of all diseases. Some of the most serious potential problems associated with sleep deprivation are cardiovascular problems, cognitive impairment, obesity, diabetes, colitis, prostate cancer, etc. To solve these problems, the Korean government provided low-cost national health insurance benefits for polysomnography tests in July 2018. However, insomnia patients still have problems getting treated in terms of time, space, and economic perspectives. Therefore, it would be better for insomnia patients to be allowed to test at home. The measuring device can measure six biosignals (eye movement, tossing and turning, body temperature, oxygen saturation, heart rate, and audio). A gyroscope sensor (MPU9250, InvenSense, USA) was used for eye movement, tossing, and turning. The input range of the sensor was in 258°/sec to 460°/sec, and the data range was in the input range. Body temperature, oxygen saturation range, and heart rate were measured by a sensor (MAX30102, Analog Devices, USA). The body temperature was measured in 30 ℃ to 45 ℃, and the oxygen saturation range was 0% for the unused state and 20 % to 90 % for the used state. The heart rate measurement range was in 40 bpm to 180 bpm. The measurement of audio signal was performed by an audio sensor (AMM2742-T-R, PUIaudio, USA). The was -42 dB ±1 dB frequency range was 20 Hz to 20 kHz. The measured data was successfully received in wireless network conditions. The system configuration was consisted of a PC and a mobile app for bio-signal measurement and data collection. The measured data was collected by mobile phones and desktops. The data collected can be used as preliminary data to determine the stage of sleep and perform the screening function for sleep induction and sleep disturbances. In the future, this convenient sleep measurement device could be beneficial for treating insomnia.

An Exploratory Study on the Success Factors of Silicon Valley Platform Business Ecosystem: Focusing on IPA Analysis and Qualitative Analysis (실리콘밸리 플랫폼 기업생태계의 성공요인에 관한 탐색적 연구: IPA 분석과 질적 분석을 중심으로)

  • Yeonsung, Jung;Seong Ho, Lee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.1
    • /
    • pp.203-223
    • /
    • 2023
  • Recently, the platform industry is rapidly growing in the global market, and competition is intensifying at the same time. Therefore, in order for domestic platform companies to have global competitiveness in the platform market, it is necessary to study the platform business ecosystem and success factors. However, most of the recent platform-related studies have been theoretical studies on the characteristics of platform business status analysis, platform economy, and indirect network externalities of platforms. Therefore, this study comprehensively analyzed the success factors of Silicon Valley's business ecosystem proposed in previous studies, and at the same time analyzed the success factors extracted from stakeholders in the actual Silicon Valley platform business ecosystem. And based on these factors, an IPA analysis was conducted as a way to propose a success plan to stakeholders in the platform business ecosystem. As a result of the analysis, among the success factors collected through previous studies, manpower, capital, and challenge culture were identified as factors that are relatively well maintained in both importance and satisfaction in Silicon Valley. In the end, it can be seen that the creation of an environment and culture in which Silicon Valley can use it to challenge itself based on excellent human resources and abundant capital contributes the most to the success of Silicon Valley's platform business. On the other hand, although it is of high importance to Silicon Valley's platform corporate ecosystem, the factors that show relatively low satisfaction among stakeholders are 'learning and benchmarking among active companies' and 'strong ties and cooperation between members', and it is analyzed that interest and effort are needed to strengthen these factors in the future. Finally, the systems and policies necessary for market autonomous competition, 'business support service industry', 'name value', and 'spin-off start-up' were important factors in literature research, but the importance and satisfaction of these factors were lowered due to changes in the times and environment. This study has academic implications in that it comprehensively analyzes the success factors of Silicon Valley's business ecosystem proposed in previous studies, and at the same time analyzes the success factors extracted from stakeholders in the actual Silicon Valley platform business ecosystem. In addition, there is another academic implications that importance and satisfaction were simultaneously examined through IPA analysis based on these various extracted factors. As for academic implications, it is meaningful in that it contributed to the formation of the domestic platform ecosystem by providing the government and companies with concrete information on the success factors of the platform business ecosystem and the theoretical grounds for the growth of domestic platform businesses.

  • PDF

Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance (이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발)

  • Ki-Yeol Eom;Byeong-Seok Min
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.

Literature Review on Applying Digital Therapeutic Art Therapy for Adolescent Substance Addiction Treatment (청소년 마약류 중독 치료를 위한 디지털치료제 예술치료 적용을 위한 문헌연구)

  • Jiwon Kim;Daniel H. Byun
    • Trans-
    • /
    • v.16
    • /
    • pp.1-31
    • /
    • 2024
  • The advent of digital media has facilitated easy access for adolescents to environments conducive to the purchase of narcotics. In particular, there's an increasing trend in the purchase and consumption of narcotics mediated through Social Network Services (SNS) and messenger services. Adolescents, sensitive to such environments, are at risk of experiencing neurological and mental health issues due to narcotic addiction, increasing their exposure to criminal activities, hence necessitating national-level management and support. Consequently, the quest for sustainable treatment methods for adolescents exposed to narcotics emerges as a critical challenge. In the context of high relapse rates in narcotic addiction, the necessity for cost-effective and user-friendly treatment programs is emphasized. This study conducts a literature review aimed at utilizing digital platforms to create an environment where adolescents can voluntarily participate, focusing on the development of therapeutic content through art. Specifically, it reviews societal perceptions and treatment statuses of adolescent drug addiction, analyzes the impact of narcotic addiction on adolescent brain activity and cognitive function degradation, and explores approaches for developing digital therapeutics to promote the rehabilitation of the addicted brain through analysis of precedential case studies. Moreover, the study investigates the benefits that the integration of digital therapeutic approaches and art therapy can provide in the treatment process and proposes the possibility of enhancing therapeutic effects through various treatment programs such as drama therapy, music therapy, and art therapy. The application of art therapy methods is anticipated to offer positive effects in terms of tool expansion, diversification of expression, data acquisition, and motivation. Through such approaches, an enhancement in the effectiveness of treatments for adolescent narcotic addiction is anticipated. Overall, this study undertakes foundational research for the development of digital therapeutics and related applications, offering economically viable and sustainable treatment options in consideration of the societal context of adolescent narcotic addiction.

Korean Sentence Generation Using Phoneme-Level LSTM Language Model (한국어 음소 단위 LSTM 언어모델을 이용한 문장 생성)

  • Ahn, SungMahn;Chung, Yeojin;Lee, Jaejoon;Yang, Jiheon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.71-88
    • /
    • 2017
  • Language models were originally developed for speech recognition and language processing. Using a set of example sentences, a language model predicts the next word or character based on sequential input data. N-gram models have been widely used but this model cannot model the correlation between the input units efficiently since it is a probabilistic model which are based on the frequency of each unit in the training set. Recently, as the deep learning algorithm has been developed, a recurrent neural network (RNN) model and a long short-term memory (LSTM) model have been widely used for the neural language model (Ahn, 2016; Kim et al., 2016; Lee et al., 2016). These models can reflect dependency between the objects that are entered sequentially into the model (Gers and Schmidhuber, 2001; Mikolov et al., 2010; Sundermeyer et al., 2012). In order to learning the neural language model, texts need to be decomposed into words or morphemes. Since, however, a training set of sentences includes a huge number of words or morphemes in general, the size of dictionary is very large and so it increases model complexity. In addition, word-level or morpheme-level models are able to generate vocabularies only which are contained in the training set. Furthermore, with highly morphological languages such as Turkish, Hungarian, Russian, Finnish or Korean, morpheme analyzers have more chance to cause errors in decomposition process (Lankinen et al., 2016). Therefore, this paper proposes a phoneme-level language model for Korean language based on LSTM models. A phoneme such as a vowel or a consonant is the smallest unit that comprises Korean texts. We construct the language model using three or four LSTM layers. Each model was trained using Stochastic Gradient Algorithm and more advanced optimization algorithms such as Adagrad, RMSprop, Adadelta, Adam, Adamax, and Nadam. Simulation study was done with Old Testament texts using a deep learning package Keras based the Theano. After pre-processing the texts, the dataset included 74 of unique characters including vowels, consonants, and punctuation marks. Then we constructed an input vector with 20 consecutive characters and an output with a following 21st character. Finally, total 1,023,411 sets of input-output vectors were included in the dataset and we divided them into training, validation, testsets with proportion 70:15:15. All the simulation were conducted on a system equipped with an Intel Xeon CPU (16 cores) and a NVIDIA GeForce GTX 1080 GPU. We compared the loss function evaluated for the validation set, the perplexity evaluated for the test set, and the time to be taken for training each model. As a result, all the optimization algorithms but the stochastic gradient algorithm showed similar validation loss and perplexity, which are clearly superior to those of the stochastic gradient algorithm. The stochastic gradient algorithm took the longest time to be trained for both 3- and 4-LSTM models. On average, the 4-LSTM layer model took 69% longer training time than the 3-LSTM layer model. However, the validation loss and perplexity were not improved significantly or became even worse for specific conditions. On the other hand, when comparing the automatically generated sentences, the 4-LSTM layer model tended to generate the sentences which are closer to the natural language than the 3-LSTM model. Although there were slight differences in the completeness of the generated sentences between the models, the sentence generation performance was quite satisfactory in any simulation conditions: they generated only legitimate Korean letters and the use of postposition and the conjugation of verbs were almost perfect in the sense of grammar. The results of this study are expected to be widely used for the processing of Korean language in the field of language processing and speech recognition, which are the basis of artificial intelligence systems.