• 제목/요약/키워드: CAE based optimization

검색결과 58건 처리시간 0.03초

가솔린 엔진의 성능, 연비, 배출 가스를 동시에 고려한 시뮬레이션 기반 흡기 다기관 길이 최적화 (Simulation-based Intake Manifold Runner Length Optimization for Improving Performance, Fuel Consumption and Emission of a Gasoline Engine)

  • 강용헌;최동훈
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.62-67
    • /
    • 2010
  • Exhausting fossil fuel and increasing concern of air pollution have brought on the change of the focus of developing new vehicles from performance to fuel economy and emission. The gasoline engines adopting the naturally aspirated way use the throttle-body for engine load control. Therefore, its pumping loss increases more than that of the diesel engine, and also mostly operating in a partial load condition has bad influence on fuel economy and emission. In these days, the continuous variable valve timing system and variable induction system are adopted in order to improve fuel consumption and emission. In this study, we optimize the runner length and operate region of variable induction system to simulataneously improve the performance, fuel economy, and emission of gasoline engine with employing GT-Power as a CAE tool for engine analysis and PIAnO as PIDO tool for process integration and design optimization.

3D 프린팅 적층 방향을 고려한 위상최적설계의 실험적 검증 (Experimental Validation of Topology Design Optimization Considering Lamination Direction of Three-dimensional Printing)

  • 박희만;이규빈;김진산;선채림;윤민호
    • 한국전산구조공학회논문집
    • /
    • 제35권3호
    • /
    • pp.191-196
    • /
    • 2022
  • 본 연구에서는 3D 프린팅 FDM 방식의 적층 방향에 따라 기계적 물성이 달라지는 이방성 특성을 확인하고 이를 이용하여 위상 최적설계를 수행하였다. 벤치마크 문제인 자동차 현가장치 부품 중 하나인 로어 컨트롤 암에 대하여 밀도법 기반 위상 최적설계를 수행하였으며, 외부 하중과 이방성 특성에 따라 위상 최적결과가 다르게 나타나는 것을 확인하였다. 이를 이용하여 최적화된 모델에 대하여 3D 프린터로 적층 방향을 달리하여 2가지 시험품을 제작하였으며 인장시험을 수행하였다. 시험시 3D 비접촉 변형률 측정기를 이용하여 변형률을 구하였으며 이를 CAE 응답해석으로 얻은 변형률과 비교한 결과가 정량 및 정성적으로 일치하는 것을 확인하였다. 3D 프린팅 적층 방향을 고려한 위상 최적모델의 인장 실험 결과를 통해 해당 최적설계 방법론의 유효성을 검증하였다.

상용승용차 시트프레임 부품의 중량 최적화에 관한 연구 (A Study on the Weight Optimization for the Passenger Car Seat Frame Part)

  • 장인식;민병조
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.155-163
    • /
    • 2006
  • Car seat is one the most important element to make comfortable drivability. It can absorb the impact or vibration during driving state. In addition to those factors, it is needed to have enough strength for passenger safety. From energy efficiency and environmental point of view lighter passenger car seat frame becomes hot issue in the auto industry. In this paper, weight optimization methodology is investigated for commercial car seat frame using CAE. Optimized designs for seat frame are developed using commercially available finite element code(ANSYS) and design of experiment method. At first, car seat frame is modelled using 3-D computer aided design tool(CATIA) and simplified for finite element modelling. Finite element analysis is carried out for the case of FMVSS 202 Head Restraint test to check the strength of the original seat frame. Two base brackets are selected as optimized elements that are the heaviest parts in the seat frame. After finite element analysis for the brackets with similar load condition to the previous test optimization technique is applied for 10% to 50% weight reduction. Design of experiment is utilized to obtain optimization design for the bracket based on the modified 50% weight reduction model in which outer shape of the bracket is conserved. Weight optimization models result in the decrease of the strength in spite of weight reduction. The more design points should be considered to get better optimized model. The more advanced optimization technique may be utilized for more parts of the seat frame to increase whole seat frame characteristics in the future.

Knowledge Support and Automation of Paneled Building Envelopes for Complex Buildings using Script Programming

  • Park, Jungdae;Im, Jinkyu
    • 국제초고층학회논문집
    • /
    • 제4권1호
    • /
    • pp.85-90
    • /
    • 2015
  • Advances in the technology of computational design are giving architects and engineers the opportunity to analyze buildings with complex geometries. This study explores the optimization and automation process using the parametric design method, and uses digital tools to achieve surface representation and panelization for curved shaped office buildings. In this paper, we propose parametric algorithms of dimensional and geometric constraints using the Knowledge-ware scripts embedded in Gehry Technologies' Digital Project. The knowledge-based design methods proposed in this study can be used to systemize the knowledge possessed by experts in the form of data. Such knowledge is required to promote collaboration between designers and engineers in the process of CAD/CAE/CAM. The aim of this study is to integrate the process into design, which establishes an integrated process. This integration enables two-way feedback between design and construction data by combining the methods used in designing, engineering, and construction.

An Optimization-based Computational Method for Surface Fitting to Update the Geometric Information of An Existing B-Rep CAD Model

  • Louhichi, Borhen;Aifaoui, Nizar;Hamdi, Mounir;BenAmara, Abdelmajid;Francois, Vincent
    • International Journal of CAD/CAM
    • /
    • 제9권1호
    • /
    • pp.17-24
    • /
    • 2010
  • For several years, researchers have focused on improving the integration of the CAD, CAM and Analysis through a better communication between the various analysis tools. This tendency to integrate the CAD/Analysis and automation of the corresponding processes requires data sharing between the various tasks using an integrated product model. We are interested in this research orientation to CAD/CAM/Analysis integration by rebuilding the CAD model (BREP), starting from the Analysis results (deformed mesh). Because this problem is complex, it requires to be split into several complementary parts. This paper presents an original interoperability process between the CAD and CAE. This approach is based on a new technique of rebuilding the CAD surface model (Nurbs, Bezier, etc.) starting from triangulation (meshed surface) as a main step of the BREP solid model. In our work, the advantages of this approach are identified using a centrifugal pump example.

THE ART of SHEET FORMING SIMULATION TECHNOLOGY in JAPAN

  • Nakamachi, Ei-Ji
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.7-34
    • /
    • 1994
  • ;Recently the sheet forming simulation technology revealed great progress in the sense of practical application in the automotive, electric/electronics and aviation/space industries. The goal of sheet forming simulation is to embedded in the design engineering system which is consisted by the analysis and synthesis modules. This design simulation system predicts the slackness of sheet and estimate the formability, and search the optimum material/forming/structure conditions. This OVER-ALL OPTIMUM DESIGN can be classified as follow; 1. ANALYZING PROCEDURE: Numerical simulation based on nonlinear theories -geometry, material and friction nonlinearities- 2. OPTIMIZATION PROCEDURE: Optimum design based on mathematical programing and AI technologies, those are implemented in CAD/CAM/CAE System - Concurrent Engineering System-. In this paper, four subjects will be discussed; (1) State of arts of computer simulation technologies in Japan. (2)History of sheet forming simulation. (3) Benchmark problems. (4) Future technology in the sheet forming simulation.ation.

  • PDF

복합재 형상의 FEA기반 설계를 위한 통합 CAD 시스템 (An Integrated CAD System for FEA-based Design of Heterogeneous Objects)

  • 신기훈;김주한
    • 한국CDE학회논문집
    • /
    • 제10권5호
    • /
    • pp.328-338
    • /
    • 2005
  • CAD systems are routinely used by designers for creating part geometries. Interfaces to CAE/CAM systems are also commonplace enabling the FEA-based design optimization and the rapid fabrication of the designed part. However, conventional CAD systems have thus far focused on objects with homogeneous interior. Two recent advances--use of heterogeneous objects such as Functionally Graded Materials (FGM) in parts and Layered Manufacturing Technology (LMT)--have brought to the forefront the need for CAD systems to support the creation of geometry as well as the graded material inside. We first describe the need and the components of such a CAD system for heterogeneous objects. A prototype CAD system is then described with one specific example (thermal barrier type FGM, pressure vessel) in order to illustrate the use of the implemented CAD system. The implemented system is manually integrated with FEA tools for optimal design. Our ongoing work involves the automation of the integration with FEA tools.

LNG 벙커링용 QC/DC 밸로즈의 유동/구조 해석 (CFD/CAE Analysis of QC/DC Bellows for LNG Bunkering)

  • 장성철;엄정필;정현철
    • 한국산업융합학회 논문집
    • /
    • 제21권5호
    • /
    • pp.191-195
    • /
    • 2018
  • By using an ANSYS product suite (CFX, Ansys Multiphysics), which is a powerful tool for multiphysics analysis of complicated physical phenomena, we performed a structural stress analysis based on fluid flow and heat transfer phenomena within a quick connect/disconnect (QC/DC) bellows system. Considering the extremely low temperatures in the QC/DC environment, an approach to the problem based on complex multi-physics phenomena, where different phenomena interact with each other, is crucial. Therefore, we use a numerical analysis technique where fluid-thermal-structural interactions are combined. In conclusion, when low temperature fluids flow inside bellows, the expected service life is conspicuously reduced due to the thermal stress caused by heat transfer. Therefore, in future research, a structure with considerably reduced thermal stress by robust design optimization will be derived.

M&S 지원을 위한 HEMOS-Cloud 서비스의 경제적 효과 (Economic Impact of HEMOS-Cloud Services for M&S Support)

  • 정대용;서동우;황재순;박성욱;김명일
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권10호
    • /
    • pp.261-268
    • /
    • 2021
  • 클라우드 컴퓨팅은 서비스 사용자 요구에 따라 컴퓨팅 자원을 임대하여 사용하는 컴퓨팅 패러다임이다. 클라우드 컴퓨팅에서 컴퓨팅 자원은 사용자의 서비스 수요에 따라 컴퓨팅 자원을 확장 또는 축소가 가능하여 전체 서비스 비용 절감 효과를 가질 수 있다. 그리고, M&S (Modeling and Simulation) 기술은 컴퓨팅 자원과 CAE 소프트웨어를 통해 엔지니어링 분석 작업 결과를 얻어, 실제 실험 결과가 없이 제품의 상태를 시뮬레이션을 수행하여 분석하는 방법이다. M&S 기술은 FEA(Finite Element Analysis), CFD(Computational Fluid Dynamics), MBD(Multibody Dynamics) 및 최적화 분야에서 활용된다. M&S 통한 작업 절차는 전처리, 해석, 후처리 단계로 구분된다. CAE 소트프웨어를 통한 3D 모델링 작업인 전/후처리는 GPU 연산이 집약적이며, 3D 모델 해석은 CPU 또는 GPU 연산이 요구된다. 일반적인 개인 데스크톱에서 복잡한 3D 모델을 해석하는 시간이 많이 소요된다. 결과적으로, M&S를 원활하게 수행하기 위해서는 고성능 컴퓨팅 자원이 요구된다. 이 문제를 해결하기 위해 우리는 통합 클라우드 및 클러스터 컴퓨팅 환경인 HEMOS-Cloud 서비스를 제안한다. 제안한 클라우드 기반 방식에서는 M&S에 필요한 전/후처리 및 솔버 작업을 원활하게 수행할 수 있도록 구성했다. 이 시스템에서 전/후처리는 VDI(Virtual Desktop Infrastructure)에서 수행되고 해석은 클러스터 환경에서 수행된다. 각 용도에 맞게 서로 다른 환경에서 분리하여 컴퓨팅 자원 간에 간섭을 최소화했다. HEMOS-Cloud 서비스는 기업 또는 학교에서 M&S의 경험이 필요로 하는 사용자에게 CAE 소프트웨어와 컴퓨팅 자원을 제공한다. 본 논문에서는 HEMOS-Cloud 서비스의 경제적 파급효과를 산업연관분석을 활용하여 분석했다. 전문가의 의견을 반영하여 조정된 계수를 통한 분석 결과는 생산유발효과 74억원, 부가가치유발효과 41억원, 취업자유발효과 10억원당 50명으로 분석되었다.

MRA와 POD를 적용한 공력특성 최적설계 (MRA AND POD APPLICATION FOR AERODYNAMIC DESIGN OPTIMIZATION)

  • 구본찬;한준희;조태현;박경현;이도형
    • 한국전산유체공학회지
    • /
    • 제20권2호
    • /
    • pp.7-15
    • /
    • 2015
  • This paper attempts to evaluate the accuracy and efficiency of a design optimization procedure by combining wavelets-based multi resolution analysis method and proper orthogonal decomposition (POD) technique. Aerodynamic design procedure calls for high fidelity computational fluid dynamic (CFD) simulations and the consideration of large number of flow conditions and design constraints. Thus, even with significant computing power advancement, current level of integrated design process requires substantial computing time and resources. POD reduces the degree of freedom of full system by conducting singular value decomposition for various field simulations. In this research, POD combined Design Optimization model is proposed and its efficiency and accuracy are to be evaluated. For additional efficiency improvement of the procedure, multi resolution analysis method is also being employed during snapshot constructions (POD training period). The proposed design procedure was applied to the optimization of wing aerodynamic performance. Throughout the research, it was confirmed that the POD/MRA design procedure could significantly reduce the total design turnaround time and also capture all detailed complex flow features as in full order analysis.