• Title/Summary/Keyword: CAE 해석

Search Result 412, Processing Time 0.028 seconds

Development of Structural Analysis Platform through Internet-based Technology Using Component Models (컴포넌트 모델을 이용한 인터넷 기반 구조해석 플랫폼 개발)

  • Shin Soo-Bong;Park Hun-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.161-169
    • /
    • 2006
  • The study proposes component models in developing an efficient platform for internet-based structural analysis. Since a structural analysis requires an operation of complicated algorithms, a client-side computation using X-Internet is preferred to a server-side computation to provide a flexible service for multi-users. To compete with the user-friendly interfaces of available commercial analysis programs, a window-based interface using Smart Client was applied. Also, component-based programming was performed with the considerations on reusability and expandability so that active Preparation for future change or modification could be feasible. The components describe the whole system by subdivision and simplification. In the relationship between upper-and lower-level components and also in the relationship between components and objects, a unified interface was used to clearly classify the connection between the libraries. By performing data communication between different types of platforms using XML WebService, a conner-stone of data transfer is proposed for the future integrated CAE. The efficiency of the developed platform has been examined through a sample structural analysis and design on planar truss structures.

A Study on the Improvement of Injection Molding Process Using CAE and Decision-tree (CAE와 Decision-tree를 이용한 사출성형 공정개선에 관한 연구)

  • Hwang, Soonhwan;Han, Seong-Ryeol;Lee, Hoojin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.580-586
    • /
    • 2021
  • The CAT methodology is a numerical analysis technique using CAE. Recently, a methodology of applying artificial intelligence techniques to a simulation has been studied. A previous study compared the deformation results according to the injection molding process using a machine learning technique. Although MLP has excellent prediction performance, it lacks an explanation of the decision process and is like a black box. In this study, data was generated using Autodesk Moldflow 2018, an injection molding analysis software. Several Machine Learning Algorithms models were developed using RapidMiner version 9.5, a machine learning platform software, and the root mean square error was compared. The decision-tree showed better prediction performance than other machine learning techniques with the RMSE values. The classification criterion can be increased according to the Maximal Depth that determines the size of the Decision-tree, but the complexity also increases. The simulation showed that by selecting an intermediate value that satisfies the constraint based on the changed position, there was 7.7% improvement compared to the previous simulation.

A Study on the Development of Impact Analysis Model of Roll Control System for Course Correction Munition (탄도 수정탄 롤제어시스템 충격해석 모델 개발에 관한 연구)

  • Ko, Jun Bok;Yun, Chan Sik;Kim, Yong Dae;Kim, Wan Joo;Cho, Seung Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.737-742
    • /
    • 2015
  • Course correction munition are a weapson system for precision attacks and are assembled by applying a ballistic control system to existing projectiles. The roll control system is a subsystem of the ballistic control system and is placed between the guidance and control units inside of the projectile, which undergoes a 5000g lateral acceleration. Thus, it is very important to design the system to endure this load. Many developed countries evaluate the performance and safety of course correction munitions' parts using live-fire gun launch tests or a soft recovery system. However, these methods are expensive and slow. Thus, in this study, we develop impact analysis model of the roll control system using CAE. We apply the code to simulate impact phenomenon and use Johnson-Cook material model for modeling the high strain rate effect on the materials. We also design bearings in detail to analyze their behavior and verify the reliability of CAE model through gas-gun impact tests of the roll control system.

Fabricaton of PEMFC separators with conducting polymer composites by injection molding process and evaluation of moldability and electrical conductivity of the separators (전도성 복합재료를 이용한 PEMFC용 separator 사출성형 제조 및 전기전도성 평가)

  • Yoon, Yong-Hun;Lim, Seung-Hyun;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1361-1366
    • /
    • 2010
  • This research aims to develop polymer composites which can be used for PEMFC separators by injection molding process. Considering the moldability and stiffness, we used PPS(Poly(phenylene sulfide)) and PP(Polypropylene) as base resin. In order to improve electrical conductivity and physical properties, we chose glass fiber, carbon fiber, carbon black, and both expanded graphite and synthetic graphite. The 3 type composites are prepared for injection molding of PEMFC separators. and CAE(Computer Aided Engineering) analysis was conducted to optimize injection processing parameters(injection pressure, heat time, mold temperature etc.). We did successfully fabricate the separators by injection molding, and measure the electrical conductivity of the samples by using four point probe device. Conclusively, PP/SG/CB composite showed better both electrical conductivity and moldability than the others.

Non-isothermal Stamping Analysis of Automotive Seat Cushion Panel Using Mg Alloy Sheet (마그네슘을 적용한 자동차 시트 쿠션 패널 비등온 성형해석)

  • Seo, Oh Suk;Lee, Chung An;Park, Chang Su;Kim, Hwa Jin;Lee, Kyoung Teak
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.605-611
    • /
    • 2016
  • Mg alloy sheet exhibits significant differences in tensile and compressive yield stress depending on the temperature, as well as variations in its hardening behavior. Such unusual behavior makes it difficult to simulate the forming process of Mg alloy sheets. Results of analysis tend to deviate significantly from the experimental data because commercial software do not completely implement the unusual hardening behavior, yield asymmetry and temperature dependent changes in the Mg alloy's material properties. In the previous study, an in-plane tension-compression cyclic tester was developed to predict the cyclic behavior of Mg alloy sheets at an elevated temperature of up to $250^{\circ}C$. A new constitutive equation was suggested to analyze the unusual behavior, and was implemented in the commercial software in the form of user subroutine. In this paper, a stamping process of Mg seat cushion panel for automotive parts was simulated using the experimental data and user subroutine. Based on the analysis, an optimal temperature condition was determined and a stamping die shape at each step was suggested in the non-isothermal stamping of Mg alloy sheets.

Development of Torsion Bar for Antiroll-Bar Assembly for Express Train (고속철도용 안티롤바 어셈블리의 토션바 개발)

  • Tominaga, Yasutoshi;Pyun, Young-Sik;Kim, Dong-Il;Choe, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.979-984
    • /
    • 2012
  • An antiroll-bar assembly is a precision component that is designed to control the rolling of railway cars. It is important for ensuring a safe and comfortable ride. A torsion bar is the main part of the antiroll-bar assembly. Now, this part is classified as a consumable, and it is imported into Korea from France. Therefore, there is a strong need to domestically develop a torsion bar suitable for Korean conditions and to reduce cost and improve quality. In this study, an antiroll bar is developed, and it is analyzed and tested by using a road histogram measured on Korean railroads. This bar shows satisfactory results in a comparison with the imported bar. It has a novel design featuring a ring cover made of SUS steels to prevent the corrosion of the torsion bar. Its safety is examined through CAE analysis and wear tests. It is found that its design does not result in a significant difference in static and fatigue safety. Two different SUS steels were investigated in terms of their wear resistance, and the best one was adopted.

자동차의 실내소음의 전달 경로 해석 및 실내 소음 저감 기법의 실험적 연구

  • 이상권
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.180-186
    • /
    • 2001
  • 자동차의 소음 진동은 파워트레인(엔진과 변속기)과 자동차의 차체 및 이 두 부분 연결하는 프레임의 동력학적인 적절한 조화에 의해서 좌우된다. 따라서 CAE를 이용한 파워트레인 및 차체의 최적 설계가 자동차 개발의 초기 개념 설계단계에는 중요한 역할을 하지만, 이 후 많은 자동차의 부품들이 서로 결합되어 완성되어지는 시작차 단계에서는 초기에 예상하지 못한 문제점들이 발생한다.(중략)

  • PDF