• Title/Summary/Keyword: CAD-CAM denture

Search Result 86, Processing Time 0.033 seconds

Adherence of Candida to complete denture surfaces in vitro: A comparison of conventional and CAD/CAM complete dentures

  • Al-Fouzan, Afnan F.;Al-mejrad, Lamya A.;Albarrag, Ahmed M.
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.402-408
    • /
    • 2017
  • PURPOSE. The goal of this study was to compare the adhesion of Candida albicans to the surfaces of CAD/CAM and conventionally fabricated complete denture bases. MATERIALS AND METHODS. Twenty discs of acrylic resin poly (methyl methacrylate) were fabricated with CAD/CAM and conventional procedures (heat-polymerized acrylic resin). The specimens were divided into two groups: 10 discs were fabricated using the CAD/CAM procedure (Wieland Digital Denture Ivoclar Vivadent), and 10 discs were fabricated using a conventional flasking and pressure-pack technique. Candida colonization was performed on all the specimens using four Candida albicans isolates. The difference in Candida albicans adhesion on the discs was evaluated. The number of adherent yeast cells was calculated by the colony-forming units (CFU) and by Fluorescence microscopy. RESULTS. There was a significant difference in the adhesion of Candida albicans to the complete denture bases created with CAD/CAM and the adhesion to those created with the conventional procedure. The CAD/CAM denture bases exhibited less adhesion of Candida albicans than did the denture bases created with the conventional procedure (P<.05). CONCLUSION. The CAD/CAM procedure for fabricating complete dentures showed promising potential for reducing the adherence of Candida to the denture base surface. Clinical Implications. Complete dentures made with the CAD/CAM procedure might decrease the incidence of denture stomatitis compared with conventional dentures.

The treatment of an edentulous patient with conventional complete denture and CAD/CAM complete denture (Conventional한 방식과 CAD/CAM System을 이용한 완전 무치악 환자 동시 수복 증례)

  • Cho, Sungyoon;Lee, Joonseok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.1
    • /
    • pp.42-49
    • /
    • 2020
  • In patients with fully edentulous jaw, treatment of complete dentures should be carried out in many stages when following the conventional methods. Therefore there were disadvantages such as multiple visits to dental clinic is inevitable. In addition, errors caused by polymerization shrinkage, which happens during the fabrication of denture, and difficulties in reproduction of damaged or lost denture were considered as disadvantages. But nowadays, computer-aided design and computer-aided manufacturing (CAD/CAM) system is widely used in dentistry and it has begun to expand its spectrum in manufacturing complete dentures. Using CAD/CAM system to fabricate complete dentures can reduce the number of patient's visit and clinical chair time, since taking impression, recording jaw relation, and selection of artificial teeth are performed at the same time during the first visit, and delivering of dentures during the second visit is possible. In addition, because 3D-Printing technology is used, errors by polymerization shrinkage can be reduced. Among the companies that fabricate complete dentures using CAD/CAM system, DENTCA CAD/CAM denture (DENTCA Inc., Los Angeles, CA, USA) is the most commercialized company. In this case, we treated patients of complete dentures using conventional complete denture method and DENTCA CAD/CAM denture system in the same patient. We would like to report this case because we have achieved good results not only in functional aspects of pronunciation, chewing, and swallowing but also in aesthetic aspects.

Comparison of shear bond strengths of different types of denture teeth to different denture base resins

  • Prpic, Vladimir;Schauperl, Zdravko;Glavina, Domagoj;Catic, Amir;Cimic, Samir
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.376-382
    • /
    • 2020
  • PURPOSE. To determine the shear bond strengths of different denture base resins to different types of prefabricated teeth (acrylic, nanohybrid composite, and cross-linked) and denture teeth produced by computer-aided design/computer-aided manufacturing (CAD/CAM) technology. MATERIALS AND METHODS. Prefabricated teeth and CAD/CAM (milled) denture teeth were divided into 10 groups and bonded to different denture base materials. Groups 1-3 comprised of different types of prefabricated teeth and cold-polymerized denture base resin; groups 4-6 comprised of different types of prefabricated teeth and heat-polymerized denture base resin; groups 7-9 comprised of different types of prefabricated teeth and CAD/CAM (milled) denture base resin; and group 10 comprised of milled denture teeth produced by CAD/CAM technology and CAD/CAM (milled) denture base resin. A universal testing machine was used to evaluate the shear bond strength for all specimens. One-way ANOVA and Tukey post-hoc test were used for analyzing the data (α=.05). RESULTS. The shear bond strengths of different groups ranged from 3.37 ± 2.14 MPa to 18.10 ± 2.68 MPa. Statistical analysis showed significant differences among the tested groups (P<.0001). Among different polymerization methods, the lowest values were determined in cold-polymerized resin.There was no significant difference between the shear bond strength values of heat-polymerized and CAD/CAM (milled) denture base resins. CONCLUSION. Different combinations of materials for removable denture base and denture teeth can affect their bond strength. Cold-polymerized resin should be avoided for attaching prefabricated teeth to a denture base. CAD/CAM (milled) and heat-polymerized denture base resins bonded to different types of prefabricated teeth show similar shear bond strength values.

Fabrication of computer-aided design/computer-aided manufacturing complete denture and conventional complete denture: case report (CAD/CAM system과 전통적인 방법을 이용한 총의치 동시 제작 증례)

  • Kim, Mi-Jin;Kim, Kang-Ho;Yeo, Dong-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.2
    • /
    • pp.141-148
    • /
    • 2016
  • Recently computer-aided technology has been widely used in dentistry. DENTCA$^{TM}$ CAD/CAM denture system (DENTCA Inc.), one of CAD/CAM systems for fabricating complete denture, tries to collect and store all of a patient's information at the first visit. This system aims to deliver denture at the second visit through utilizing the CAD/CAM software to access the stored data for designing the 3D denture model. The 3 dimensional (3D) denture will then be fabricated with 3D printer. Many case reports have evaluated clinical application of CAD/CAM system for fabricating complete dentures. This case report is about fabricating of complete dentures using DENTCA system and conventional method in same patient. With two cases, usefulness and limitation of DENTCA system could be evaluated.

Rehabilitation of fully edentulous patient using Ceramill full denture system (FDS) (Ceramill full denture system을 이용한 무치악 환자의 양악 총의치 제작)

  • Lee, Younghoo;Kwon, Kung-Rock;Pae, Ahran;Noh, Kwantae;Paek, Janghyun;Hong, Seoung-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.3
    • /
    • pp.232-237
    • /
    • 2019
  • CAD/CAM technology has already been used in most areas of prosthetics. The range of CAD/CAM application in denture fabricating process has been gradually increasing since the CAD/CAM technology was introduced for the fabrication of complete dentures in 1994. This paper describes a technique that combines conventional and CAD/CAM technology for the fabrication of complete dentures: the master casts from a conventional impression techniques were scanned first, and the wax denture was fabricated using Amann Girrbach's Ceramill full denture system (fds). The purpose of this paper is to introduce the case in which making an esthetically and functionally satisfied denture in shorter time is possible with CAD/CAM technology.

A novel method of complete denture fabrication with CAD/CAM (DENTCA 시스템을 이용한 총의치 제작법)

  • Lee, Ju Hyoung;Sohn, Dong Seok;Kim, Tae Hyung
    • The Journal of the Korean dental association
    • /
    • v.51 no.6
    • /
    • pp.337-345
    • /
    • 2013
  • Currently CAD/CAM technology has been used widely in dentistry. But it has mainly been focused on fabrication of fixed partial dentures and implant-supported prosthesis. DENTCA company uses new cutting edge of CAD/CAM technology to revolutionize denture production. With developing a CAD/CAM technology of DENTCA company, it is possible to make complete dentures with minimum visits to the clinic. The aim of this article is to introduce a new denture-making method by CAD/CAM.

CAD/CAM fabricated complete denture using 3D face scan: A case report (3D face scan을 이용한 CAD/CAM 제작 의치 증례)

  • Eom, Dae-Young;Leesungbok, Richard;Lee, Suk-Won;Park, Su-Jung;Ahn, Su-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.4
    • /
    • pp.436-443
    • /
    • 2017
  • In the past, computer-aided design / computer-aided manufacturing (CAD/CAM) technology was the closed system that users had to use the components of only one manufacturer. At present, it has changed to the open system with the flexibility to select and use the components of various manufacturers' components according to their needs. Despite the development of dental materials and prostheses manufacturing methods, denture manufacturing has followed conventional manufacturing methods for nearly 100 years. However, studies on CAD/CAM fabricated denture have been recently carried out to overcome the disadvantages of conventional denture manufacturing. Some commercialized products using milling or 3D printing have already been applied clinically. This case report confirms the possibility of CAD/CAM dentures using 3D face scan and compared them to conventionally fabricated dentures.

Shear bond strength between CAD/CAM denture base resin and denture artificial teeth when bonded with resin cement

  • Han, Sang Yeon;Moon, Yun-Hee;Lee, Jonghyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.251-258
    • /
    • 2020
  • PURPOSE. The bond strengths between resin denture teeth with various compositions and denture base resins including conventional and CAD/CAM purposed materials were evaluated to find influence of each material. MATERIALS AND METHODS. Cylindrical rods (6.0 mm diameter × 8.0 mm length) prepared from pre-polymerized CAD/CAM denture base resin blocks (PMMA Block-pink; Huge Dental Material, Vipi Block-Pink; Vipi Industria) were bonded to the basal surface of resin teeth from three different companies (VITA MFT®; VITA Zahnfabrik, Endura Posterio®; SHOFU Dental, Duracross Physio®; Nissin Dental Products Inc.) using resin cement (Super-Bond C&B; SUN MEDICAL). As a control group, rods from a conventional heat-polymerizing denture base resin (Vertex™ Rapid Simplified; Vertex-Dental B.V. Co.) were attached to the resin teeth using the conventional flasking and curing method. Furthermore, the effect of air abrasion was studied with the highly cross-linked resin teeth (VITA MFT®) groups. The shear bond strengths were measured, and then the fractured surfaces were examined to analyze the mode of failure. RESULTS. The shear bond strengths of the conventional heat-polymerizing PMMA denture resin group and the CAD/CAM denture base resin groups were similar. Air abrasion to VITA MFT® did not improve shear bond strengths. Interfacial failure was the dominant cause of failure for all specimens. CONCLUSION. Shear bond strengths of CAD/CAM denture base materials and resin denture teeth using resin cement are comparable to those of conventional methods.

Comparison of flexural strength according to thickness between CAD/CAM denture base resins and conventional denture base resins (CAD/CAM 의치상 레진과 열중합 의치상 레진의 두께에 따른 굴곡 강도 비교)

  • Lee, Dong-Hyung;Lee, Joon-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.183-195
    • /
    • 2020
  • Purpose: The purpose of this study is to compare the flexural strength of CAD/CAM denture base resins with conventional denture base resins based on their thicknesses. Materials and Methods: For the conventional denture base resins, Lucitone 199® (C-LC) was used. DIOnavi - Denture (P-DO) and DENTCA Denture Base II (P-DC) were taken for the 3D printing denture base resins. For the prepolymerized PMMA resins, Vipi Block Gum (M-VP) and M-IVoBase® CAD (M-IV) were used. The final dimensions of the specimens were 65.0 mm x 12.7 mm x 1.6 mm / 2.0 mm / 2.5 mm. The 3-point bend test was implemented to measure the flexural strength and flexural modulus. Microscopic evaluation of surface of fractured specimen was conducted by using a scanning electron microscope (SEM). After testing the normality of the data, one-way ANOVA was adopted to evaluate the differences among sample groups with a significance level of P = 0.05. The Tukey HSD test was performed for post hoc analysis. Results: Under the same thicknesses, there are significant differences in flexural strength between CAD/CAM denture base resins and conventional denture base resins except for P-DO and C-LC. M-VP showed higher flexural strength than conventional denture base resins, P-DC and M-IV displayed lower flexural strength than conventional denture base resins. Flexural modulus was highest in M-VP, followed by C-LC, P-DO, P-DC, M-IV, significant differences were found between all materials. In the comparison of flexural strength according to thickness, flexural strength of 2.5 mm was significantly higher than that of 1.6 mm in C-LC. Flexural strength of 2.5 mm and 2.0 mm was significantly higher than that of 1.6 mm in P-DC and M-VP. In M-IV, as the thickness increases, significant increase in flexural strength appeared. SEM analysis illustrates different fracture surfaces of the specimens. Conclusion: The flexural strength of different CAD/CAM denture base resins used in this study varied according to the composition and properties of each material. The flexural strength of CAD/CAM denture base resins was higher than the standard suggested by ISO 20795-1:2013 at a thickness of 1.6 mm or more though the thickness decreased. However, for clinical use of dentures with lower thickness, further researches should be done regarding other properties at lower thickness of denture base resins.

The fabrication of abutment crowns for existing removable partial denture using CAD/CAM: A clinical report (CAD/CAM을 이용하여 기존 국소의치에 맞는 지대치 보철물 제작 증례)

  • Chae, Min-Jeong;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.490-494
    • /
    • 2019
  • Abutment teeth supporting removable partial denture could be faced a number of problems including development of dental caries. If the existing removable partial denture is in clinically acceptable state and the patient does not want to replace the existing removable partial denture, then a new prosthesis for abutment teeth need to be made. The procedure of fabricating a new prosthesis of abutment teeth for existing removable partial denture is complicate and technically challenging. To fabricate the abutment crown, the original cast of patient obtained before any complication to the abutment teeth is required. The original cast should also contain teeth other than the abutment teeth as a reference point. Once the cast is prepared, CAD/CAM could be used to produce retrofitting prosthesis effortlessly and efficiently. This clinical report presents fabricating a crown to fit existing removable partial denture using CAD/CAM for a patient with post and core failure and dislodged prosthesis. The prosthesis had high stability with minimum adjustment yielding satisfying result.