• 제목/요약/키워드: CAD based optimization

검색결과 88건 처리시간 0.024초

위상최적설계를 이용한 CAD모델 구축 (CAD Model Construction Using Topology Optimization)

  • Lee, Dong-hoon
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.355.1-355
    • /
    • 2002
  • Topology optimization is widely accepted as a conceptual design tool for the product design. Since the resulted layout of the topology optimization is a kind of digital images represented by the density distribution, the seamless process is required to transform digital images to the CAD model for the practical use. In this paper, the general process to construct a CAD model is developed to apply for topology images based on elements. (omitted)

  • PDF

CAD와 유한요소해석을 연계한 금형 냉각문제의 설계최적화에 대한 연구 (A Study on CAD/CAE Integration for Design Optimization of Mold Cooling Problem)

  • 오동길;류동화;최주호;김준범;하덕식
    • 한국CDE학회논문집
    • /
    • 제9권2호
    • /
    • pp.93-101
    • /
    • 2004
  • In mechanical design, optimization procedures have mostly been implemented solely by CAE codes combined by optimization routine, in which the model is built, analyzed and optimized. In the complex geometries, however, CAD is indispensable tool for the efficient and accurate modeling. This paper presents a method to carry out optimization, in which CAD and CAE are used for modeling and analysis respectively and integrated in an optimization routine. Application Programming Interface (API) function is exploited to automate CAD modeling, which enables direct access to CAD. The advantage of this method is that the user can create very complex object in Parametric and automated way, which is impossible in CAE codes. Unigraphics and ANSYS are adopted as CAD and CAE tools. In ANSYS, automated analysis is done using codes made by a script language, APDL(ANSYS Parametric Design Language). Optimization is conducted by VisualDOC and IDESIGN respectively. As an illustrative example, a mold design problem is studied, which is to minimize temperature deviation over a diagonal line of the surface of the mold in contact with hot glass.

복합재 구조물의 동시공학 설계최적화 (Concurrent Engineering Design Optimization of Composite Structures)

  • 김건인;이희각
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.304-312
    • /
    • 1996
  • Concepts, methods and tools for interactive CAD-based concurrent engineering design optimization of mechanical/structural systems and components which are critical in terms of cost development time, functionality and quality, are presented. The emphasis is on implementation of methods and capabilities for the optimization of composite structural system, and the integration of design process and manufacturing process of composite structures into standard CAD-based concurrent engineering environment The optimization of composite fuselage structures are performed under concurrent engineering environment for the example.

  • PDF

위상최적설계 결과를 이용한 CAD 인터페이스 (CAD Interface using Topology Optimization)

  • 김성훈;민승재;이상헌
    • 한국CDE학회논문집
    • /
    • 제14권4호
    • /
    • pp.281-289
    • /
    • 2009
  • Topology optimization has been widely used for the optimal structure design for weight reduction and high performance. Since the result of three-dimensional topology optimization is represented by the discrete material distribution in finite elements, it is hard to interpret from a design point of view. In this paper, the method for interpreting three-dimensional topology optimization resuIt into a series of cross-sectional curve representation is proposed and interfaced with the existing CAD system for the practical use. The concept of node density and virtual grid is introduced to transform element density values into grid density and material boundaries in each cross section are identified based on the element volume rate to satisfy the amount of material specified in the original design intent. Design exampIes show that three-dimensional topology result can be converted into a form of curve CAD model and the seamless interface with CAD software can be achieved.

캐드 기반 범용 최적설계 시스템 개발 및 피로수명을 위한 구조형상최적설계에의 응용 (Development of a CAD-based General Purpose Optimal Design and Its Application to Structural Shape for Fatigue Life)

  • 곽병만;유용균
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1340-1345
    • /
    • 2003
  • In this paper, an integrated optimal design software system for structural components has been developed which interfaces existing commercial codes for CAD, CAE and Optimization. They include specialized optimal design software codes such as iSIGHT and VisualDOC, optimization module imbedded in CAD software developed by CAD developers, and optimal design software systems based on API of commercial CAD software. The advantages of the CAD imbedded optimal design approach and those of specialized optimal design software are taken to develop the system. The user defines optimal design formulation in the user interface for problem definition in the CAD control stage, where design variables are directly selectable from the CAD model and various properties and performance functions defined. The commercial CAD codes, Open I-DEAS are used for the development. The resulting software is minimally connected to CAD and CAE systems while keeping maximum independence from each other. This assures flexibility and freedom for problem definition. Fatigue life optimization is taken as a nontrivial application area. As a specific example, the shape design of a knuckle part of an automobile is performed, where the minimum fatigue life over the material domain in terms of the number of cycles of a curb strike are maximized under the constraint of not exceeding the current mass. The fatigue life has been improved by four times of the initial life. The developed software is illustrated to maintain the advantages of existing optimal design software systems while improving independency and flexibility.

  • PDF

통합된 CAD/CAE 자동화 System을 이용한 구조강도해석 및 설계최적화에 관한 연구 (A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE)

  • 윤종민;원준호;김종수;최주호
    • 한국CDE학회논문집
    • /
    • 제11권2호
    • /
    • pp.128-137
    • /
    • 2006
  • In this paper, a CAD/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares for a complex model in which the modeling by parametric feature is not easy to apply. Unigraphics is used for CAD modeling, in which the process is automated by using UG/Knowledge Fusion for modeling itself and UG/Open API function for the other functions respectively. Structural analyses are also carried out automatically by ANSYS using the imported parasolid model. The developed system is applied for the PLS(Plasma Lighting System) consisting of more than 20 components, which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The analyses include responses by static, wind and impact loads. As a result of analyses, tilt assembly, which is a link between upper and lower body, is found to be the most critical component bearing higher stresses. Experiment is conducted using MTS to validate the analysis result. Optimization is carried out using the software Visual DOC for the tilt assembly to minimize material volume while maintaining allowable stress level. As a result of optimization, the maximum stress is reduced by 57% from the existing design, though the material volume has increased by 21%.

위상최적설계를 이용한 CAD 모델 구축 (CAD Model Construction Using Topology Optimization)

  • 이동훈;민승재;서상호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.523-528
    • /
    • 2002
  • Topology optimization is widely accepted as a conceptual design tool for the product design. Since the resulted layout of the topology optimization is a kind of digital images represented by the density distribution, the seamless process is required to transform digital images to the CAD model for the practical use. In this paper, the general process to construct a CAD model is developed to apply for topology images based on elements. The node density and the morphology technique is adopted to extract boundary contour of the shape and remove the noise of images through erosion and dilation operation. The proposed method automatically generates point data sets of the geometric model. The process is integrated with Pro/Engineer, so that the engineer in practice can directly handle with curves or surface form digital images.

  • PDF

CAD 기반 최적설계 시스템을 활용한 공작기계 구조의 최적화 (Optimization of Machine Tool Structure using a CAD-based Optimal Design System)

  • 신정호;곽병만
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.926-931
    • /
    • 2001
  • In this paper a CAD-based optimal design system is introduced and applied to optimal design of machine tool structures. The system is designed to reduce manual interfacing effort. All the design activities such as selecting design variables, making FE meshes and FE analysis are integrated on a parametric CAD program. A user can easily select design variables by clicking a CAD model. To enhance the robustness and versatility, this system uses the finite difference method for the design sensitivity analysis. By taking a practical example of the design of the column of a horizontal machining center, it is shown that the software system is efficiently usable in industry establishing the goal of minimizing user intervention between various analysis and optimization activities.

  • PDF

등기하 해석법을 이용한 형상 최적 설계 (Shape Design Optimization using Isogeometric Analysis Method)

  • 하승현;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.216-221
    • /
    • 2008
  • Shape design optimization for linear elasticity problem is performed using isogeometric analysis method. In many design optimization problems for real engineering models, initial raw data usually comes from CAD modeler. Then designer should convert this CAD data into finite element mesh data because conventional design optimization tools are generally based on finite element analysis. During this conversion there is some numerical error due to a geometry approximation, which causes accuracy problems in not only response analysis but also design sensitivity analysis. As a remedy of this phenomenon, the isogeometric analysis method is one of the promising approaches of shape design optimization. The main idea of isogeometric analysis is that the basis functions used in analysis is exactly same as ones which represent the geometry, and this geometrically exact model can be used shape sensitivity analysis and design optimization as well. In shape design sensitivity point of view, precise shape sensitivity is very essential for gradient-based optimization. In conventional finite element based optimization, higher order information such as normal vector and curvature term is inaccurate or even missing due to the use of linear interpolation functions. On the other hands, B-spline basis functions have sufficient continuity and their derivatives are smooth enough. Therefore normal vector and curvature terms can be exactly evaluated, which eventually yields precise optimal shapes. In this article, isogeometric analysis method is utilized for the shape design optimization. By virtue of B-spline basis function, an exact geometry can be handled without finite element meshes. Moreover, initial CAD data are used throughout the optimization process, including response analysis, shape sensitivity analysis, design parameterization and shape optimization, without subsequent communication with CAD description.

  • PDF

토폴로지 이미지를 이용한 CAD모델 구축 (CAD Model Construction Using Topology Image)

  • 이동훈;민승재
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1925-1932
    • /
    • 2003
  • Topology optimization is widely accepted as a conceptual design tool for the product design. Since the resulted layout of the topology optimization is a kind of digital images represented by the density distribution, the seamless process is required to transform digital images to the CAD model for the practical use. In this paper, the general process to construct a CAD model is developed to apply for topology images based on elements. The node density and the morphology technique are adopted to extract boundary contour of the shape and remove the noise of images through erosion and dilation operation. The proposed method automatically generates point data sets of the geometric model. The process is integrated with Pro/Engineer, so that the engineer in practice can directly handle with curves or surfaces form digital images.