• Title/Summary/Keyword: CAD Integrated Design Optimization Program

Search Result 4, Processing Time 0.025 seconds

Development of DS/FDM-a Robust CAD-based Optimal Design System and Its Application to Engineering Structures (CAD 기반 최적설계 시스템인 DS/FDM의 개발과 공학 구조물에 대한 적용)

  • Han, Jeong-Sam;Uphaus, Frank;Kim, Yeong-Ryeol;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.720-724
    • /
    • 2000
  • In this paper, we introduce a seamlessly integrated CAD-based design system (DS) for CAD modeling, engineering analysis, and optimal design which has been developed in CCED at KAIST, The key points of this integrating philosophy are to make full use of a parametric CAD program as the platform of integration and to adopt finite difference method for design sensitivity analysis in optimization process to get robustness and versatility. Design variables are directly selected by clicking CAD model parameters and all the analysis and design activities are menu-driven. This integrated program, named as DS/FDM, runs on Windows NT or Unix and FE analyses are performed at a remote Unix-workstation for multiple users. Application examples include shape optimal design of a belt clip that fits onto a portable electronic device and a bracket to show performance of DS/FDM with shell and tetra solid elements. This software is found efficient and effective fur shape design and size design of engineering structures.

  • PDF

Optimization of Machine Tool Structure using a CAD-based Optimal Design System (CAD 기반 최적설계 시스템을 활용한 공작기계 구조의 최적화)

  • Shin, Jeong-Ho;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.926-931
    • /
    • 2001
  • In this paper a CAD-based optimal design system is introduced and applied to optimal design of machine tool structures. The system is designed to reduce manual interfacing effort. All the design activities such as selecting design variables, making FE meshes and FE analysis are integrated on a parametric CAD program. A user can easily select design variables by clicking a CAD model. To enhance the robustness and versatility, this system uses the finite difference method for the design sensitivity analysis. By taking a practical example of the design of the column of a horizontal machining center, it is shown that the software system is efficiently usable in industry establishing the goal of minimizing user intervention between various analysis and optimization activities.

  • PDF

Structural Design of the Bed Which Supports Micro Aspherical Lens Fabrication System Using the Design Optimization Technique (최적설계 기법을 이용한 초정밀 비구면 렌즈 가공기 베드의 구조설계)

  • Yi I.L.;Park S.J.;Lee G.B.;Lee S.W.;Yu Y.G.;Kwak B.M.;Baek S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.851-856
    • /
    • 2005
  • The precision fabrication of aspherical lenses is increasingly required for the latest applications of compact and high resolution video-recording or camera systems. Micro-optical components, including micro-spherical or aspherical lenses and reflecting mirrors, are generally required to be manufactured with high shape accuracy, extremely low surface roughness and no surface damage. To meet the needs of the precision fabrication system, a bed which supports the micro aspherical lens fabrication machines stably and safely is required. In this study, the thickness of the ribs of the bed is optimized using the CAD integrated optimal design system, a virtual DS program.

  • PDF

Design for Hydraulic Hose Routing Pathes and Fitting Angles (유압 호스의 경로 생성 및 피팅 배열각 설계)

  • Kim Y.S.;Kim J.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.40-48
    • /
    • 2005
  • A hydraulic hose is an important part of the hydraulic system which transmits power using pressurized fluids. It allows relative motion between components at each end of the hose assembly, and it is much easier to route a hose assembly than it is to bend and install a rigid tubing assembly. Unnecessary loads, which drop the hose's pressure capability and shorten service life, depend on a hose-routing. Therefore, the Hydraulic system designers must be aware to consider unnecessary load does not affect the here. For this consideration in an early stage of the design process, CAD system must support the hose assembly routing design function which is to generate routing path and design fitting angle properly. This paper proposes 2 methods. One is to generate curves that are similar to routing paths of the real hose assembly using the energy minimization method and the optimization method. The other is to design fitting angles that are important design elements of a hose assembly using the Parallel Transport Frame. To implement the proposed methods above, commercial CAD software, CATIA has been integrated with our program.