• Title/Summary/Keyword: CA simulation

Search Result 278, Processing Time 0.028 seconds

Design, Control and Localization of Underwater Mine Disposal Robots (수중 기뢰 제거 로봇의 설계, 제어 및 위치 추정)

  • Moon, Yong Seon;Ko, Nak Yong;Sur, Joono
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.805-812
    • /
    • 2013
  • This paper describes the design, control, and localization which comprise major aspects of the development of underwater robots for the mine disposal. The developed robots are called the Mine Killer (MK-1) and MK-2. MK-1 had been developed from September 2009 and was presented at the 9-th International Symposium at NPS Monterey CA, on May 17-21, 2010[1]. The paper presents design of MK-1 and MK-2 in detail with comparison of these two versions of MKs. Then it derives hydrodynamic coefficients of MK-1. Based on the coefficients, the motion of MK-1 is simulated for straight line motion and circular motion. Also simulation results for PD control, LQ control and sliding mode control are presented. Finally, it shows a particle filter method for localization of MK-1 and MK-2 using simple range data from acoustic beacons.

Analysis of MX-TM CFAR Processors in Radar Detection (레이다 검파에서의 MX-TM CFAR 처리기들에 대한 성능 분석)

  • 김재곤;조규홍;김응태;이동윤;송익호;김형명
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1991.10a
    • /
    • pp.92-95
    • /
    • 1991
  • Constant false alarm rate(CFAR) processors are useful for detecting radar targets in background for which all parameters in the statistical distribution are not known and may be nonstationary. The well known "cell averging" (CA) CFAR processor is known to yield best performance in homogeneous case, but exhibits severe performance in the presence of an interfering target in the reference window or/and in the region of clutter edges. The "order statistics"(OS) CFAR processor is known to have a good performance above two nonhomogeneous cases. The modified OS-CFAR processor, known as "trimmed mean"(TM) CFAR processor performs somewhat better than the OS-CFAR processor by judiciously trimming the ordered samples. This paper proposes and analyzes the performance of a new CFAR processor called the "maximum trimmed mean"(MX-TM) CFAR processor combining the "greatest of"(GO) CFAR and TM-CFAR processors. The MAX operation is included to control false alarms at clutter edges. Our analyses show that the proposed CFAR processor has similar performance TM- and OS-CFAR processors in homogeneous case and in the precence of interfering targets, but can control the false rate in clutter edges. Simulation results are presented to demonstrate the qualitative effects of various CFAR processors in nonhomogeneous clutter environments.

An Efficient Downlink MAC Protocol for Multi-User MIMO WLANs

  • Liu, Kui;Li, Changle;Guo, Chao;Chen, Rui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4242-4263
    • /
    • 2017
  • Multi-User Multiple-Input Multiple-Output (MU-MIMO) technology has recently attracted significant attention from academia and industry because of it is increasingly important role in improving networks' capacity and data rate. Moreover, MU-MIMO systems for the Fifth Generation (5G) have already been researched. High Quality of Service (QoS) and efficient operations at the Medium Access Control (MAC) layer have become key requirements. In this paper, we propose a downlink MU-MIMO MAC protocol based on adaptive Channel State Information (CSI) feedback (called MMM-A) for Wireless Local Area Networks (WLANs). A modified CSMA/CA mechanism using new frame formats is adopted in the proposed protocol. Specifically, the CSI is exchanged between stations (STAs) in an adaptive way, and a packet selection strategy which can guarantee a fairer QoS for scenarios with differentiated traffic is also included in the MMM-A protocol. We then derive the expressions of the throughput and access delay, and analyze the performance of the protocol. It is easy to find that the MMM-A protocol outperforms the commonly used protocols in terms of the saturated throughput and access delay through simulation and analysis results.

Simulation of flue gas treatment section in RDF combustion process using Aspen Plus (Aspen Plus를 이용한 RDF 소각시 발생하는 배가스 처리 공정 모사)

  • Lee, Ju-Ho;Jung, Moon-Hun;Kwon, Young-Hyun;Kim, Min-Choul;Lee, Gang-Woo;Shon, Byung-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.848-850
    • /
    • 2009
  • 화석에너지 고갈로 인한 유가 상승으로 폐기물 에너지화가 이슈화 되고 있다. 폐기물 고형 연료 RDF는 에너지 문제를 해결하기위한 대안 중 하나로 수송성, 저장성, 연소안정성이 우수하나 환경오염 물질의 발생이 문제가 된다. 이러한 오염물질을 처리하기 위한 배가스 오염 물질처리를 위한 plant 설비 비용과 시간이 많이 투자된다. Aspen plus는 mass energy balance와 화학적평형, 열역학을 이용하여 공정 모사를 할 수 있는 프로그램으로 검증되었다. RDF의 삼성분, 원소분석, 발열량을 입력을 통해 HCl, SOx, NOx, CO의 배출량을 예측하고 이에 맞는 SNCR, SDA 등과 같은 반응기를 적용 하므로써 다양한 배가스 처리를 모사 할 수 있다. NOx를 제어하기위에 urea주입과 SOx와 HCl을 제거하기 위한 CaO를 주입을 모사 하므로써 실제 운영 적용 전 단계에 역할로 유용한 도구로 판단된다.

  • PDF

Delay Analysis of Carrier Sense Multiple Access with Collision Resolution

  • Choi, Hyun-Ho;Lee, In-Ho;Lee, Howon
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.275-285
    • /
    • 2015
  • To improve the efficiency of carrier sense multiple access (CSMA)-based medium access control (MAC) protocols, CSMA with collision resolution (CSMA/CR) has been proposed. In the CSMA/CR, a transmitting station can detect a collision by employing additional sensing after the start of a data transmission and then resolve the next collision that might occur by broadcasting a jam signal during a collision detection (CD) period. In this paper, we analyze the delay of a CSMA/CR based on a generic p- persistent CSMA model and obtain the minimum achievable delay of the CSMA/CR by finding the optimal length of the CD period according to the number of contending stations. Through this delay analysis, we also investigate the throughput-delay characteristics of the CSMA/CR protocol according to various parameters. Analysis and simulation results show that the CSMA/CR has a considerably lower delay and its throughput-delay characteristic is significantly improved than the conventional CSMA/CA and wireless CSMA/CD protocols.

Scheduling of Real-time and Nonreal-time Traffics in IEEE 802.11 Wireless LAN (무선랜에서의 실시간 및 비실시간 트래픽 스케줄링)

  • Lee, Ju-Hee;Lee, Chae Y.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.75-89
    • /
    • 2003
  • Media Access Control (MAC) Protocol in IEEE 802.11 Wireless LAN standard supports two types of services, synchronous and asynchronous. Synchronous real-time traffic is served by Point Coordination Function (PCF) that implements polling access method. Asynchronous nonreal-time traffic is provided by Distributed Coordination Function (DCF) based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. Since real-time traffic is sensitive to delay, and nonreal-time traffic to error and throughput, proper traffic scheduling algorithm needs to be designed. But it is known that the standard IEEE 802.11 scheme is insufficient to serve real-time traffic. In this paper, real-time traffic scheduling and admission control algorithm is proposed. To satisfy the deadline violation probability of the real time traffic the downlink traffic is scheduled before the uplink by Earliest Due Date (EDD) rule. Admission of real-time connection is controlled to satisfy the minimum throughput of nonreal-time traffic which is estimated by exponential smoothing. Simulation is performed to have proper system capacity that satisfies the Quality of Service (QoS) requirement. Tradeoff between real-time and nonreal-time stations is demonstrated. The admission control and the EDD with downlink-first scheduling are illustrated to be effective for the real-time traffic in the wireless LAN.

Mesoscopic numerical analysis of reinforced concrete beams using a modified micro truss model

  • Nagarajan, Praveen;Jayadeep, U.B.;Madhavan Pillai, T.M.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.23-37
    • /
    • 2010
  • Concrete is a heterogeneous material consisting of coarse aggregate, mortar matrix and interfacial zones at the meso level. Though studies have been done to interpret the fracture process in concrete using meso level models, not much work has been done for simulating the macroscopic behaviour of reinforced concrete structures using the meso level models. This paper presents a procedure for the mesoscopic analysis of reinforced concrete beams using a modified micro truss model. The micro truss model is derived based on the framework method and uses the lattice meshes for representing the coarse aggregate (CA), mortar matrix, interfacial zones and reinforcement bars. A simple procedure for generating a random aggregate structure is developed using the constitutive model at meso level. The study reveals the potential of the mesoscopic numerical simulation using a modified micro truss model to predict the nonlinear response of reinforced concrete structures. The modified micro truss model correctly predicts the load-deflection behaviour, crack pattern and ultimate load of reinforced concrete beams failing under different failure modes.

The Effect of Rotor Geometry on the Performance of a Wells Turbine for Wave Energy Conversion (Part II : The Suitable Choice of Blade Design Factors) (파력발전용 웰즈터빈의 동익형상이 성능에 미치는 영향 (제2보 : 최적익형의 형상 제안))

  • Kim, Tai-Whan;Park, Sung-Soo;Setoguchi, T.;Takao, M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.55-61
    • /
    • 2003
  • This paper represents the effect of rotor geometry on the performance of a small-scale Wells turbine for wave energy conversion. In this study, four kinds of blade profile were selected from previous studies with regard to the blade profile of the Wells turbine. The experimental investigations have been performed for two solidities by model testing under steady flow conditions, and then the effect of blade profile on the running and starting characteristics under sinusoidal flow conditions have been investigated by a numerical simulation using a quasi-steady analysis. In addition, the effect of sweep on the turbine characteristics has been investigated for the cases of CA9 and HSIM 15-262123-1576. As a result, a suitable choice of these design factors has been suggested.

A Study on Packet Security of ATM Firewall Switch (ATM 방화벽 스위치 기반의 패킷 보안에 관한 연구)

  • 임청규
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.3
    • /
    • pp.100-106
    • /
    • 2003
  • This paper presents the design of a value-added ATM switch. The ATM switch ca perform CAC Processing and Firewall Processing Routine at packet-level (IP) at the ATM environment per port. The proposed two routine are integrated into the components of ATM switch. The Firewall switch employs a suggested two routine model to avoid or reduce the latency caused by filtering. Also, we suggest four classes are defined. namely, classes A, B, C, and D, which are orded from the safest to the most dangerous. The suggested model performance of ATM Firewall switch is estimated simulation in terms of the throught and latency by computer.

  • PDF

Musculotendon Model to Represent Characteristics of Muscle Fatigue due to Functional Electrical Stimulation (기능적 전기자극에 의한 근육피로의 특성을 표현하는 근육 모델)

  • Lim, Jong-Kwang;Nam, Moon-Hyon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.1046-1053
    • /
    • 1999
  • The musculotendon model is presented to show the declines in muscle force and shortening velocity during muscle fatigue due to the repeated functional electrical stimulation (FES). It consists of the nonlinear activation and contraction dynamics including physiological concepts of muscle fatigue. The activation dynamics represents $Ca^{2+}$ binding and unbinding mechanism with troponins of cross-bridges in sarcoplasm. It has the constant binding rate or activation time constant and two step nonlinear unbinding rate or inactivation time constant. The contraction dynamics is the modified Hill type model to represent muscle force - length and muscle force - velocity relations. A muscle fatigue profile as a function of the intracellular acidification, pH is applied into the contraction dynamics to represent the force decline. The computer simulation shows that muscle force and shortening velocity decline in stimulation time. And we validate the model. The model can predicts the proper muscle force without changing its parameters even when existing the estimation errors of the optimal fiber length. The change in the estimate of the optimal fiber length has an effect only on muscle time constant in transient period not on the tetanic force in the steady-state and relaxation periods.

  • PDF