• Title/Summary/Keyword: C57/BL/6 Mice

Search Result 1,140, Processing Time 0.027 seconds

Role of Interleukin-4 (IL-4) in Respiratory Infection and Allergy Caused by Early-Life Chlamydia Infection

  • Li, Shujun;Wang, Lijuan;Zhang, Yulong;Ma, Long;Zhang, Jing;Zu, Jianbing;Wu, Xuecheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1109-1114
    • /
    • 2021
  • Chlamydia pneumoniae is a type of pathogenic gram-negative bacteria that causes various respiratory tract infections including asthma. Chlamydia species infect humans and cause respiratory infection by rupturing the lining of the respiratory which includes the throat, lungs and windpipe. Meanwhile, the function of interleukin-4 (IL-4) in Ch. pneumoniae respiratory infection and its association with the development of airway hyperresponsiveness (AHR) in adulthood and causing allergic airway disease (AAD) are not understood properly. We therefore investigated the role of IL-4 in respiratory infection and allergy caused by early life Chlamydia infection. In this study, Ch. pneumonia strain was propagated and cultured in HEp-2 cells according to standard protocol and infant C57BL/6 mice around 3-4 weeks old were infected to study the role of IL-4 in respiratory infection and allergy caused by early life Chlamydia infection. We observed that IL-4 is linked with Chlamydia respiratory infection and its absence lowers respiratory infection. IL-4R α2 is also responsible for controlling the IL-4 signaling pathway and averts the progression of infection and inflammation. Furthermore, the IL-4 signaling pathway also influences infection-induced AHR and aids in increasing AAD severity. STAT6 also promotes respiratory infection caused by Ch. pneumoniae and further enhanced its downstream process. Our study concluded that IL-4 is a potential target for preventing infection-induced AHR and severe asthma.

High fat diet-induced brain damaging effects through autophagy-mediated senescence, inflammation and apoptosis mitigated by ginsenoside F1-enhanced mixture

  • Hou, Jingang;Jeon, Byeongmin;Baek, Jongin;Yun, Yeejin;Kim, Daeun;Chang, Boyoon;Kim, Sungyeon;Kim, Sunchang
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.79-90
    • /
    • 2022
  • Background: Herbal medicines are popular approaches to capably prevent and treat obesity and its related diseases. Excessive exposure to dietary lipids causes oxidative stress and inflammation, which possibly induces cellular senescence and contribute the damaging effects in brain. The potential roles of selective enhanced ginsenoside in regulating high fat diet (HFD)-induced brain damage remain unknown. Methods: The protection function of Ginsenoside F1-enhanced mixture (SGB121) was evaluated by in vivo and in vitro experiments. Human primary astrocytes and SH-SY5Y cells were treated with palmitic acid conjugated Bovine Serum Albumin, and the effects of SGB121 were determined by MTT and lipid uptake assays. For in vivo tests, C57BL/6J mice were fed with high fat diet for 3 months with or without SGB121 administration. Thereafter, immunohistochemistry, western blot, PCR and ELISA assays were conducted with brain tissues. Results and conclusion: SGB121 selectively suppressed HFD-induced oxidative stress and cellular senescence in brain, and reduced subsequent inflammation responses manifested by abrogated secretion of IL-6, IL-1β and TNFα via NF-κB signaling pathway. Interestingly, SGB121 protects against HFD-induced damage by improving mitophagy and endoplasmic reticulum-stress associated autophagy flux and inhibiting apoptosis. In addition, SGB121 regulates lipid uptake and accumulation by FATP4 and PPARα. SGB121 significantly abates excessively phosphorylated tau protein in the cortex and GFAP activation in corpus callosum. Together, our results suggest that SGB121 is able to favor the resistance of brain to HFD-induced damage, therefore provide explicit evidence of the potential to be a functional food.

A ketogenic diet reduces body weight gain and alters insulin sensitivity and gut microbiota in a mouse model of diet-induced obesity

  • Sumin Heo;Soo Jin Yang
    • Journal of Nutrition and Health
    • /
    • v.56 no.4
    • /
    • pp.349-360
    • /
    • 2023
  • Purpose: Ketogenic diets (KDs) have anti-obesity effects that may be related to glucose control and the gut microbiota. This paper hypothesizes that KD reduces body weight and changes the insulin sensitivity and gut microbiota composition in a mouse model of diet-induced obesity. Methods: In this study, C57BL/6 male mice were assigned randomly to 3 groups. The assigned diets were provided to the control and high-fat (HF) diet groups for 14 weeks. The KD group was given a HF diet for 8 weeks to induce obesity, followed by feeding the KD for the next 6 weeks. Results: After the treatment period, the KD group exhibited a 35.82% decrease in body weight gain compared to the HF group. In addition, the KD group demonstrated enhanced glucose control, as shown by the lower levels of serum fasting glucose, serum fasting insulin, and the homeostatic model assessment of insulin resistance, compared to the HF group. An analysis of the gut microbiota using 16S ribosomal RNA sequencing revealed a significant decrease in the proportion of Firmicutes when the KD was administered. In addition, feeding the KD reduced the overall alpha-diversity measures and caused a notable separation of microbial composition compared to the HF diet group. The KD also led to a decrease in the relative abundance of specific species, such as Acetatifactor_muris, Ligilactobacillus_apodemi, and Muribaculum_intestinale, compared with the HF group. These species were positively correlated with the body weight, whereas the abundant species in the KD group (Kineothrix_alysoides and Saccharofermentans_acetigenes) showed a negative correlation with body weight. Conclusion: The current study presents supporting evidence that KD reduced the body weight and altered the insulin sensitivity and gut microbiota composition in a mouse model of diet-induced obesity.

Dietary Aloe Reduces Adipogenesis via the Activation of AMPK and Suppresses Obesity-related Inflammation in Obese Mice

  • Shin, Eun-Ju;Shin, Seul-Mee;Kong, Hyun-Seok;Lee, Sung-Won;Do, Seon-Gil;Jo, Tae-Hyung;Park, Young-In;Lee, Chong-Kil;Hwang, In-Kyeong;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.11 no.2
    • /
    • pp.107-113
    • /
    • 2011
  • Background: Metabolic disorders, including type II diabetes and obesity, present major health risks in industrialized countries. AMP-activated protein kinase (AMPK) has become the focus of a great deal of attention as a novel therapeutic target for the treatment of metabolic syndromes. In this study, we evaluated whether dietary aloe could reduce obesity-induced inflammation and adipogenesis. Methods: Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Results: Aloe QDM complex downregulated fat size through suppressed expression of scavenger receptors on adipose tissue macrophages (ATMs) compared with HFD. Both white adipose tissue (WATs) and muscle exhibited increased AMPK activation through aloe supplementation, and in particular, the Aloe QDM complex. Obesity-induced inflammatory cytokines (IL-$1{\beta}$ and -6) and $HIF1{\alpha}$ mRNA and protein were decreased markedly, as was macrophage infiltration by the Aloe QDM complex. Further, the Aloe QDM complex decreased the translocation of NF-${\kappa}B$ p65 from the cytosol in the WAT. Conclusion: Dietary aloe formula reduced obesity-induced inflammatory responses by activation of AMPK in muscle and suppression of proinflammatory cytokines in the WAT. Additionally, the expression of scavenger receptors in the ATM and activation of AMPK in WAT led to reduction in the percent of body fat. Thus, we suggest that the effect of the Aloe QDM complex in the WAT and muscle are related to activation of AMPK and its use as a nutritional intervention against T2D and obesity-related inflammation.

Simotang Alleviates the Gastrointestinal Side Effects of Chemotherapy by Altering Gut Microbiota

  • Deng, Lijing;Zhou, Xingyi;Lan, Zhifang;Tang, Kairui;Zhu, Xiaoxu;Mo, Xiaowei;Zhao, Zongyao;Zhao, Zhiqiang;Wu, Mansi
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.405-418
    • /
    • 2022
  • Simotang oral liquid (SMT) is a traditional Chinese medicine (TCM) consisting of four natural plants and is used to alleviate gastrointestinal side effects after chemotherapy and functional dyspepsia (FD). However, the mechanism by which SMT helps cure these gastrointestinal diseases is still unknown. Here, we discovered that SMT could alleviate gastrointestinal side effects after chemotherapy by altering gut microbiota. C57BL/6J mice were treated with cisplatin (DDP) and SMT, and biological samples were collected. Pathological changes in the small intestine were observed, and the intestinal injury score was assessed. The expression levels of the inflammatory factors IL-1β and IL-6 and the adhesive factors Occludin and ZO-1 in mouse blood or small intestine tissue were also detected. Moreover, the gut microbiota was analyzed by high-throughput sequencing of 16S rRNA amplicons. SMT was found to effectively reduce gastrointestinal mucositis after DDP injection, which lowered inflammation and tightened the intestinal epithelial cells. Gut microbiota analysis showed that the abundance of the anti-inflammatory microbiota was downregulated and that the inflammatory microbiota was upregulated in DDP-treated mice. SMT upregulated anti-inflammatory and anticancer microbiota abundance, while the inflammatory microbiota was downregulated. An antibiotic cocktail (ABX) was also used to delete mice gut microbiota to test the importance of gut microbiota, and we found that SMT could not alleviate gastrointestinal mucositis after DDP injection, showing that gut microbiota might be an important mediator of SMT treatment. Our study provides evidence that SMT might moderate gastrointestinal mucositis after chemotherapy by altering gut microbiota.

Anti-Obesity Effects of Imyo-san on High Fat Diet Induced Obese Mice (고지방식이 유도 비만쥐에서 이묘산의 항비만 효과)

  • Kang, Seok-Beom;Shon, Woo-Seok;Kim, Young-Jun;Woo, Chang-Hoon
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.32 no.2
    • /
    • pp.19-36
    • /
    • 2022
  • Objectives This study is to investigate the effects and mechanisms of Imyo-san (IMS) on the obese mice model induced by high-fat diet. Methods Antioxidative capacity was measured by in vitro method. C57BL/6 mice were randomly assigned into 5 groups (n=7). Normal group was fed general diet (Normal). The other 4 groups were fed high fat diet (HFD) with water (Control), with Garcinia gummi-gutta (GG, Garcinia gummi-gutta 200 mg/kg), with low-dose IMS (IMSL, Imyo-san 0.54 g/kg) and with high-dose IMS (IMSH, Imyo-san 1.08 g/kg). Results IMS showed high radical scavenging activity. After 6 week experiment, body weight, food intake, food efficiency ratio (FER), epididymal fat and liver weight, triglyceride (TG), total cholesterol (TC), high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol, very low density lipoprotein (VLDL) cholesterol, sterol regulatory element-binding protein-1 (SREBP-1), phospho-acetyl-CoA carboxylase (p-ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), SREBP-2, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), phospho-liver kinase B1 (p-LKB1), phospho-AMP-activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor 𝛼 (PPAR𝛼), peroxisome proliferator-activated receptor 𝛾 coactivator-1𝛼 (PGC-1𝛼), uncoupling protein-2 (UCP-2), carnitine palmitoyltransferase 1A (CPT-1A), and histology of liver and epididymal fat were measured and analysed. Body weight gain, FER, liver and epididymal fat weight of IMS groups were significantly decreased. There were significant improvements in blood lipids with less TG, TC, LDL-cholesterol, VLDL-cholesterol and more HDL-cholesterol. Proteins associated with lipid synthesis (SREBP-1, p-ACC, FAS, SCD-1) and cholesterol (SREBP-2, HMGCR) was improved. Factors regulating lipid synthesis and lipid catabolism (p-LKBI, p-AMPK, PPARα, PGC-1α, UCP-2, CPT-1A) were increased. In histological examinations, IMS group had smaller fat droplets than control group. All results increased depending on concentration. Conclusions It can be suggested that IMS has anti-obesity effects with improving lipid metabolism.

Improvement Effect of Non-alcoholic Fatty Liver Disease by Curcuma longa L. Extract (강황 추출물의 비알코올성 지방간 질환 개선 효과)

  • Lee, Young Seob;Lee, Dae Young;Kwon, Dong Yeul;Kang, Ok Hwa
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.4
    • /
    • pp.276-286
    • /
    • 2020
  • Background: Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with multiple metabolic disorders. The medicinal plant Curcuma longa L. is widely distributed in Asia and has been used to treat a spectrum diseases in clinical practice. To date, there are inadequate reports of the effects of C. longa 50% EtOH extract (CE) on NAFLD. Therefore, in this study, we evaluate the CE on an NAFLD animal and elucidate the mechanism of action. Methods and Results: C57BL/6J mice fed a methionine-choline deficient diet (MCD) were treated with CE or milk thistle, and changes in inflammation and stetosis were assessed. Experimental animals were divided into six group (n = 10); Normal, MCD, MCD + CE 50 mg/kg/day (CE 50), MCD + CE 100 mg/kg/day (CE 100), MCD + CE 150 mg/kg/day (CE 150), and the Control, MCD + Milk thistle 150 mg/kg/day (MT 150). Body weight, liver weight, liver function, and histological changes were assessed in experimental animals. Quantitative real-time polymerase chain reaction and western blot analyses were performed on samples collected after 4 weeks of treatment. We observed that CE administration improved MCD-diet-induced lipid accumulation, and triglyceride (TG) and total cholesterol (TC) levels in serum. Treatment with CE also decreased hepatic lipogenesis through modulation of the sterol regulatory element binding protein-1 (SREBP-1), CCAAT-enhancer binding protein α (C/EBPα), fatty acid synthase (FAS), and peroxisome proliferator-activated receptor γ (PPARγ) expresion. In addition, the use of CE increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and inhibited the up-regulation of toll-like receptor (TLR)-2 and TLR-4 signaling and the production of inflammatory mediators. Conclusions: In this report, we observed that CE regulated lipid accumulation in an MCD dietinduced NAFLD model by decreasing lipogenesis. These data suggeste that CE could effectively protect mice against MCD-induced NAFLD, by inhibiting the TLR-2 and TLR-4 signaling cascades.

Neuroprotective and Anti-inflammatory Effects of Bee Venom Acupuncture on MPTP-induced Mouse (MPTP 유발 파킨슨병 동물 모델에 대한 봉독약침의 신경보호 효과 및 항염증 효과)

  • Park, Won;Kim, Jae-Kyu;Kim, Jong-In;Choi, Do-Young;Koh, Hyung-Kyun
    • Journal of Acupuncture Research
    • /
    • v.27 no.3
    • /
    • pp.105-116
    • /
    • 2010
  • 목적 : 이 연구는 MPTP 유발 파킨슨병 동물 모델에서 봉독약침의 신경보호 효과 및 항염증 효과를 확인하기 위해 시행되었다. 방법 : C57BL/6 mice에 신경독소인 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)를 하루에 2시간 간격으로 MPTP-HCl(20mg/kg per dose)을 4번 복강 내 주입하여 중뇌 흑질의 도파민 신경세포를 파괴한 파킨슨병 동물 모델을 유발하였다. 실험군은 MPTP군, MPTP 현종 BVA군, MPTP 곡지 BVA군, MPTP 신수 BVA군의 4군으로 하였다. 마지막 MPTP 투여 2시간 후에 1차로 봉독약침을 시술하고, 그 후 48시간 간격으로 총 5차 연속 시술하였다. 봉독약침액의 농도는 0.2mg/Kg으로 하였고, 경혈은 양측 현종($GB_{39}$), 곡지($LI_{11}$), 신수($BL_{23}$)를 사용했고, 주입량은 각 경혈당 양측으로 각 $20{\mu\ell}$씩 주입하였다. 항염증작용을 알아보기 위해 TH, MAC-1, iNOS HSP70을, 세포사멸에 대한 신경세포의 보호효과를 알아보기 위해 caspase-3을 면역조직화학법을 사용하여 실시하였다. 결과 : 실험 결과 MPTP 유발 파킨슨병 동물 모델에서 현종 곡지 신수혈에 대한 봉독약침은 TH-Immunoreactivity neuron의 감소와 microglial activation을 억제하였다. 봉독약침군 모두 효과를 보였으나 그 중 현종과 신수혈에서 특히 억제작용이 컸다. MAC-1에서는 현종혈이 억제작용이 컸다. HSP70-IR neuron은 곡지에서 유의한 억제작용을 보였으나, iNOS neuron은 모든 군에서 유의한 차이를 보이지 않았다. 또한 세포사멸억제여부 실험에서 봉독약침은 모두 억제작용을 보였으나 특히 곡지자침군에서 caspase-3 발현을 유의하게 억제하였다. 결론 : 이러한 결과는 봉독약침이 MPTP 투여로 인한 중뇌 흑질의 염증에 의한 도파민 신경세포 손상을, 염증을 억제함으로써 항염 효과를 나타냄을 알 수 있으며, 신경세포를 보호하는 활성이 있음을 보여줌과 동시에 세포사멸을 억제하는 활성이 있다고 사료된다.

Effects of 18β-glycyrrhetinic acid on pro-inflammatory cytokines and neuronal apoptosis in the hippocampus of lipopolysaccharide-treated mice (18β-Glycyrrhetinic acid가 lipopolysaccharide에 의한 생쥐 뇌조직의 염증성 사이토카인과 해마신경세포 자연사에 미치는 영향)

  • Lee, Ji-Seung;Kwon, Man-Jae;Kweon, Su-Hyeon;Kim, Jeeho;Moon, Ji-Young;Cho, Yoon-Cheong;Shin, Jung-Won;Lee, Jong-Soo;Sohn, Nak-Won
    • The Korea Journal of Herbology
    • /
    • v.31 no.6
    • /
    • pp.73-81
    • /
    • 2016
  • Objectives : $18{\beta}$-Glycyrrhetinic acid (18betaGA) is an metabolite of glycyrrhizin in Glycyrrhiza (licorice). The present study investigated anti-inflammatory and anti-apoptosis effect of 18betaGA on the brain tissue of lipopolysaccharide (LPS)-treated C57BL/6 mice. Methods : 18betaGA was administered orally with low (30 mg/kg) and high (100 mg/kg) doses for 3 days prior to LPS (3 mg/kg) injection. Pro-inflammatory cytokines mRNA including tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin (IL)-$1{\beta}$, IL-6, and inflammatory enzyme cyclooxygenase-2 (COX-2) mRNA were measured in the cerebral cortex, hippocampus, and hypothalamus tissue using real-time polymerase chain reaction at 24 h after the LPS injection. Histological changes of Cornu ammonis area 1 (CA1) neurons, Bax, Bcl-2, and caspase-3 expression in the hippocampus was also evaluated by immunohistochemistry and Western blotting method. Results : 18betaGA significantly attenuated the up-regulation of TNF-${\alpha}$, IL-$1{\beta}$, IL-6 mRNA, and COX-2 mRNA expression in the brain tissues induced by the LPS injection. 18betaGA also significantly attenuated the reductions of the thickness of CA1 and the number of CA1 neurons. The up-regulation of Bax protein expression in the hippocampal tissue by the LPS injection was significantly attenuated, while the ratio of Bcl-2/Bax expression was increased by 18betaGA treatment. 18betaGA also significantly attenuated the up-regulation of Bax and caspase-3 expression in the CA1 of the hippocampus. Conclusion : This results indicate that 18betaGA has anti-inflammatory and anti-apoptosis effect under neuroinflammation induced by the LPS injection and suggest that 18betaGA may be a beneficial drug for various brain diseases accompanied with the brain tissue inflammation.

Effects of Extract of Herba Polygalae Japonica on Inflammation Cells of Lung in Asthma-induced Mice by OVA Exposure (과자금(瓜子金) 추출물과 Cyclosporin A가 OVA로 천식이 유발된 생쥐의 염증성 면역세포에 미치는 영향)

  • Cho, Eun-Hawn;Seo, Young-Bae;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.23 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • Objectives : The present study was carried out to investigate the effect of Herba Polygalae Japonica on the proliferation and activation of eosinophils which were prepared from lung cells of asthma-induced mice by ovalbumin (OVA) treatment. Methods : C57BL/6 mouse was exposed to OVA three times a week for 6 weeks. The mouse lung tissues were dissected out, chopped and dessiciated with collagenase (1 ${\mu}g$/ml). Eosinophils were activated by rIL-3/rmIL-5 co-treatments. The lung cells were treated with extract of Herba Polygalae Japonica (EPJ), incubated for 48 hr at $37^{\circ}C$, and analyzed by flow cytometer, ELISA, RT-PCR and immunocytochemistry stain. Results : A significant cytotoxicity by drug treatment was not observed. The cell number ratio of granulocyte, CD3e-/CCR3+, CD3e+CD69+, CD4+, CD23+/B220+ cells was increased in rmIL-5/rIL-3 treated control group compared to the normal group. Cells numbers in the experimental animal group treated with EPJ was all decreased. In ELISA analysis, IL-4, IL-5, IL-13 levels and histamine release level were increased in the control group compared to the normal animal group, then significantly decreased in the experimental group with 100 ${\mu}g$/ml of EPJ treatment. In RT-PCR analysis, mRNA expressions of IL-4, IL-5, IL-13, CCR3 and eotaxin were increased in the control group compared to the normal animal group, then decreased in the experimental group with 100 ${\mu}g$/ml of EPJ treatment. And eosinophil proliferation levels were 18847${\pm}$,1527 (cpm) in the control group, 4676${\pm}$972 (cpm) in the positive control group, and 7709 ${\pm}$ 549 (cpm), 16839 ${\pm}$ 1403 (cpm), 16385 ${\pm}$ 1723 (cpm) in the experimental group with 100 ${\mu}g$/ml, 10 ${\mu}g$/ml, 1 ${\mu}g$/ml of EPJ treatment. Conclusions : The present data suggested that Herba polygalae japonica may have an effects on the inhibition of parameters associated with asthma responses in eosinpophils, and thus implicate the possibility for the clinical application of EPJ.

  • PDF