• 제목/요약/키워드: C4.5 Classification Algorithm

검색결과 41건 처리시간 0.027초

의사결정트리의 분류 정확도 향상 (Classification Accuracy Improvement for Decision Tree)

  • 메하리 마르타 레제네;박상현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.787-790
    • /
    • 2017
  • Data quality is the main issue in the classification problems; generally, the presence of noisy instances in the training dataset will not lead to robust classification performance. Such instances may cause the generated decision tree to suffer from over-fitting and its accuracy may decrease. Decision trees are useful, efficient, and commonly used for solving various real world classification problems in data mining. In this paper, we introduce a preprocessing technique to improve the classification accuracy rates of the C4.5 decision tree algorithm. In the proposed preprocessing method, we applied the naive Bayes classifier to remove the noisy instances from the training dataset. We applied our proposed method to a real e-commerce sales dataset to test the performance of the proposed algorithm against the existing C4.5 decision tree classifier. As the experimental results, the proposed method improved the classification accuracy by 8.5% and 14.32% using training dataset and 10-fold crossvalidation, respectively.

의사결정나무에서 분리 변수 선택에 관한 연구 (A Study on Selection of Split Variable in Constructing Classification Tree)

  • 정성석;김순영;임한필
    • 응용통계연구
    • /
    • 제17권2호
    • /
    • pp.347-357
    • /
    • 2004
  • 의사결정나무에서 분리 변수를 선택하는 것은 매우 중요한 일이다. C4.5는 변수 선택에 있어 연속형 변수로의 변수 선택 편의가 심각하고, QUEST는 연속형 변수와 관련해서 정규성 가정이 위반될 경우 변수 선택력이 떨어진다. 본 논문에서는 통계적 로버스트 검정 알고리즘을 제안하고, 모의 실험을 통하여 C4.5, QUEST그러고 제안된 알고리즘의 효율성을 비교하였다. 실험 결과 제안된 알고리즘이 변수 선택 편의와 변수 선택력 측면에서 로버스트함을 알 수 있었다.

디인터레이싱을 위한 C4.5 분류화 기법의 적용 및 구현 (The Adopting C4.5 classification and it's Application for Deinterlacing)

  • 김동형
    • 한국산학기술학회논문지
    • /
    • 제18권1호
    • /
    • pp.8-14
    • /
    • 2017
  • 디인터레이싱이란 두 개의 필드(짝수 필드 및 홀수 필드)로 구성된 인터레이스 영상을 프로그레시브 영상으로 변환하는 기술이다. 이는 크게 공간영역에서의 디인터레이싱과 시간영역에서의 디인터레이싱 기술로 나뉠 수 있다. 공간영역에서의 기법은 하나의 독립적인 필드만을 사용하여 디인터레이싱을 수행하는 것으로 하드웨어의 구성은 용이하지만 디인터레이싱 대상 화소의 정보가 해당 필드에 존재하지 않는 경우 화질 열화가 발생할 수 있다. 반면 시간영역에서의 기법은 메모리 사용량이 높고 하드웨어의 구성이 어렵지만 보다 높은 객관적 화질을 얻을 수 있다. 하지만 움직임 추정이 잘못된 경우 현저한 화질열화가 발생한다. 제안하는 방법은 공간영역에서의 디인터레이싱 기법으로 대상화소 주변의 통계적 특성에 따라 서로 다른 기법을 사용하여 디인터레이싱을 수행한다. 이 과정에서 최적의 디인터레이싱 방법의 선택을 위해 엔트로피 기반의 대표적인 분류 알고리즘인 C4.5 알고리즘을 적용한다. 실험결과 제안하는 알고리즘은 이전의 여러 방법들과 비교하여 높은 객관적 화질을 가지는 것을 볼 수 있었으며, 주관적 화질 또한 상대적으로 유사하거나 높은 것을 볼 수 있었다.

Hardware Accelerated Design on Bag of Words Classification Algorithm

  • Lee, Chang-yong;Lee, Ji-yong;Lee, Yong-hwan
    • Journal of Platform Technology
    • /
    • 제6권4호
    • /
    • pp.26-33
    • /
    • 2018
  • In this paper, we propose an image retrieval algorithm for real-time processing and design it as hardware. The proposed method is based on the classification of BoWs(Bag of Words) algorithm and proposes an image search algorithm using bit stream. K-fold cross validation is used for the verification of the algorithm. Data is classified into seven classes, each class has seven images and a total of 49 images are tested. The test has two kinds of accuracy measurement and speed measurement. The accuracy of the image classification was 86.2% for the BoWs algorithm and 83.7% the proposed hardware-accelerated software implementation algorithm, and the BoWs algorithm was 2.5% higher. The image retrieval processing speed of BoWs is 7.89s and our algorithm is 1.55s. Our algorithm is 5.09 times faster than BoWs algorithm. The algorithm is largely divided into software and hardware parts. In the software structure, C-language is used. The Scale Invariant Feature Transform algorithm is used to extract feature points that are invariant to size and rotation from the image. Bit streams are generated from the extracted feature point. In the hardware architecture, the proposed image retrieval algorithm is written in Verilog HDL and designed and verified by FPGA and Design Compiler. The generated bit streams are stored, the clustering step is performed, and a searcher image databases or an input image databases are generated and matched. Using the proposed algorithm, we can improve convenience and satisfaction of the user in terms of speed if we search using database matching method which represents each object.

A study on data mining techniques for soil classification methods using cone penetration test results

  • Junghee Park;So-Hyun Cho;Jong-Sub Lee;Hyun-Ki Kim
    • Geomechanics and Engineering
    • /
    • 제35권1호
    • /
    • pp.67-80
    • /
    • 2023
  • Due to the nature of the conjunctive Cone Penetration Test(CPT), which does not verify the actual sample directly, geotechnical engineers commonly classify the underground geomaterials using CPT results with the classification diagrams proposed by various researchers. However, such classification diagrams may fail to reflect local geotechnical characteristics, potentially resulting in misclassification that does not align with the actual stratification in regions with strong local features. To address this, this paper presents an objective method for more accurate local CPT soil classification criteria, which utilizes C4.5 decision tree models trained with the CPT results from the clay-dominant southern coast of Korea and the sand-dominant region in South Carolina, USA. The results and analyses demonstrate that the C4.5 algorithm, in conjunction with oversampling, outlier removal, and pruning methods, can enhance and optimize the decision tree-based CPT soil classification model.

텍스트 마이닝을 이용한 XML 문서 분류 기술 (Classification Techniques for XML Document Using Text Mining)

  • 김천식;홍유식
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권2호
    • /
    • pp.15-23
    • /
    • 2006
  • 인터넷에는 많은 문서가 있고 지금도 새로운 문서가 만들어지고 있다. 따라서 인터넷에 존재하는 문서를 의미 있게 분류하는 것은 향후 문서의 관리 및 질의처리에서 중요한 문제이다. 하지만 지금까지 대부분은 키워드에 기초한 문서 분류방법을 사용하고 있다. 이 방법은 문서를 효율적으로 분류하지 못했다. 또한 의미를 포함한 문서의 분류를 하지 못한다. 사람이 문서를 꼼꼼하게 읽어서 문서를 분류하는 방법이 최선이지만, 시간적인 면이나 효율성에 문제가 있다. 따라서 본 논문에서는 신경망 알고리즘과 C4.5 알고리즘을 이용하여 문서를 분류하고자 한다. 실험 데이터로 XML로 만들어진 이력서 데이터를 사용하여 실험하였다. 실험결과 문서 분류에 가능성을 보였다. 또한, 다양한 문서 분류 응용에 적용하여 좋은 결과를 얻을 것으로 기대한다.

  • PDF

A New Incremental Learning Algorithm with Probabilistic Weights Using Extended Data Expression

  • Yang, Kwangmo;Kolesnikova, Anastasiya;Lee, Won Don
    • Journal of information and communication convergence engineering
    • /
    • 제11권4호
    • /
    • pp.258-267
    • /
    • 2013
  • New incremental learning algorithm using extended data expression, based on probabilistic compounding, is presented in this paper. Incremental learning algorithm generates an ensemble of weak classifiers and compounds these classifiers to a strong classifier, using a weighted majority voting, to improve classification performance. We introduce new probabilistic weighted majority voting founded on extended data expression. In this case class distribution of the output is used to compound classifiers. UChoo, a decision tree classifier for extended data expression, is used as a base classifier, as it allows obtaining extended output expression that defines class distribution of the output. Extended data expression and UChoo classifier are powerful techniques in classification and rule refinement problem. In this paper extended data expression is applied to obtain probabilistic results with probabilistic majority voting. To show performance advantages, new algorithm is compared with Learn++, an incremental ensemble-based algorithm.

Evaluation of Machine Learning Algorithm Utilization for Lung Cancer Classification Based on Gene Expression Levels

  • Podolsky, Maxim D;Barchuk, Anton A;Kuznetcov, Vladimir I;Gusarova, Natalia F;Gaidukov, Vadim S;Tarakanov, Segrey A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권2호
    • /
    • pp.835-838
    • /
    • 2016
  • Background: Lung cancer remains one of the most common cancers in the world, both in terms of new cases (about 13% of total per year) and deaths (nearly one cancer death in five), because of the high case fatality. Errors in lung cancer type or malignant growth determination lead to degraded treatment efficacy, because anticancer strategy depends on tumor morphology. Materials and Methods: We have made an attempt to evaluate effectiveness of machine learning algorithms in the task of lung cancer classification based on gene expression levels. We processed four publicly available data sets. The Dana-Farber Cancer Institute data set contains 203 samples and the task was to classify four cancer types and sound tissue samples. With the University of Michigan data set of 96 samples, the task was to execute a binary classification of adenocarcinoma and non-neoplastic tissues. The University of Toronto data set contains 39 samples and the task was to detect recurrence, while with the Brigham and Women's Hospital data set of 181 samples it was to make a binary classification of malignant pleural mesothelioma and adenocarcinoma. We used the k-nearest neighbor algorithm (k=1, k=5, k=10), naive Bayes classifier with assumption of both a normal distribution of attributes and a distribution through histograms, support vector machine and C4.5 decision tree. Effectiveness of machine learning algorithms was evaluated with the Matthews correlation coefficient. Results: The support vector machine method showed best results among data sets from the Dana-Farber Cancer Institute and Brigham and Women's Hospital. All algorithms with the exception of the C4.5 decision tree showed maximum potential effectiveness in the University of Michigan data set. However, the C4.5 decision tree showed best results for the University of Toronto data set. Conclusions: Machine learning algorithms can be used for lung cancer morphology classification and similar tasks based on gene expression level evaluation.

분류 알고리즘의 효율성에 대한 경험적 비교연구 (The empirical comparison of efficiency in classification algorithms)

  • 전홍석;이주영
    • 대한안전경영과학회지
    • /
    • 제2권3호
    • /
    • pp.171-184
    • /
    • 2000
  • We may be given a set of observations with the classes or clusters. The aim of this article is to provide an up-to-date review of different approaches to classification, compare their performance on a wide range of challenging data-sets. In this paper, machine learning algorithm classifiers based on CART, C4.5, CAL5, FACT, QUEST and statistical discriminant analysis are compared on various datasets in classification error rate and algorithms.

  • PDF

퍼지 결정트리를 이용한 패턴분류를 위한 데이터 마이닝 알고리즘 (Data Mining Algorithm Based on Fuzzy Decision Tree for Pattern Classification)

  • 이중근;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제26권11호
    • /
    • pp.1314-1323
    • /
    • 1999
  • 컴퓨터의 사용이 일반화됨에 따라 데이타를 생성하고 수집하는 것이 용이해졌다. 이에 따라 데이타로부터 자동적으로 유용한 지식을 얻는 기술이 필요하게 되었다. 데이타 마이닝에서 얻어진 지식은 정확성과 이해성을 충족해야 한다. 본 논문에서는 데이타 마이닝을 위하여 퍼지 결정트리에 기반한 효율적인 퍼지 규칙을 생성하는 알고리즘을 제안한다. 퍼지 결정트리는 ID3와 C4.5의 이해성과 퍼지이론의 추론과 표현력을 결합한 방법이다. 특히, 퍼지 규칙은 속성 축에 평행하게 판단 경계선을 결정하는 방법으로는 어려운 속성 축에 평행하지 않는 경계선을 갖는 패턴을 효율적으로 분류한다. 제안된 알고리즘은 첫째, 각 속성 데이타의 히스토그램 분석을 통해 적절한 소속함수를 생성한다. 둘째, 주어진 소속함수를 바탕으로 ID3와 C4.5와 유사한 방법으로 퍼지 결정트리를 생성한다. 또한, 유전자 알고리즘을 이용하여 소속함수를 조율한다. IRIS 데이타, Wisconsin breast cancer 데이타, credit screening 데이타 등 벤치마크 데이타들에 대한 실험 결과 제안된 방법이 C4.5 방법을 포함한 다른 방법보다 성능과 규칙의 이해성에서 보다 효율적임을 보인다.Abstract With an extended use of computers, we can easily generate and collect data. There is a need to acquire useful knowledge from data automatically. In data mining the acquired knowledge needs to be both accurate and comprehensible. In this paper, we propose an efficient fuzzy rule generation algorithm based on fuzzy decision tree for data mining. We combine the comprehensibility of rules generated based on decision tree such as ID3 and C4.5 and the expressive power of fuzzy sets. Particularly, fuzzy rules allow us to effectively classify patterns of non-axis-parallel decision boundaries, which are difficult to do using attribute-based classification methods.In our algorithm we first determine an appropriate set of membership functions for each attribute of data using histogram analysis. Given a set of membership functions then we construct a fuzzy decision tree in a similar way to that of ID3 and C4.5. We also apply genetic algorithm to tune the initial set of membership functions. We have experimented our algorithm with several benchmark data sets including the IRIS data, the Wisconsin breast cancer data, and the credit screening data. The experiment results show that our method is more efficient in performance and comprehensibility of rules compared with other methods including C4.5.