• 제목/요약/키워드: C3M(Chemical Mechanical Micro Machining)

검색결과 5건 처리시간 0.021초

화학 기계적 미세가공 기술 (Chemical Mechanical Micro Machining(C3M) Process)

  • 박준민;정해도;김성헌;정상철;이응숙
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.739-742
    • /
    • 2000
  • Micro machining technology has been studied to fabricate small size and high accuracy milli-structure products. To perfectly overcome the conventional mechanical machining methods, the chemical mechanical micro machining(C3M) process was developed. The mechanism of C3M process is that chemical solution etches the material and results in the generation of the chemical reacted layer, and the mechanical micro tool subsequently removes the layer. From the fundamental experiments, the C3M process has been founded to have the advantages of lower machining resistance, tool wear, and higher surface quality and form accuracy than conventional methods. This study focuses on the micro grooving of both the metallic material(SKDII, A1) and hard brittle silicon oxide.

  • PDF

화학 기계적 미세 가공기술에 의한 버 최소화에 관한 연구 (A Study on The Burr Minimization by The Chemical Mechanical Micro Machining(C3M))

  • 이현우;박준민;정상철;정해도;이응숙
    • 한국정밀공학회지
    • /
    • 제18권12호
    • /
    • pp.177-184
    • /
    • 2001
  • C3M(chemical mechanical micro machining) is applied for diminishing the size of burr and fabricating the massless patterning for aluminium wafer(thickness of 1${\mu}m$). It is difficult to perform the micro size machining with the radically increased shear stress. While the miniaturization and function-orientation of parts has been needed in the many field such as electronics, optics and medicine. etc., it is not enough to satisfy the industry needs in the machining technology. In this paper feasibility test of diminishing burr and fabricating maskless pattern was experimented and analyzed. In the experiment oxide layer was farmed on the aluminium with chemical reaction by ${HNO_3}$(10wt%), then the surface was grooved with tungsten carbide tool for the different condition such as the load and fred rate. The result was compared with the conventional machining to show the improvement of C3M with SEM for burr diminish and XPS for atomic existence, AFM for more precise image.

  • PDF

알루미늄 박막의 표면화학반응이 버 감소에 미치는 영향 (The Influence of The Burr Reduction by The Chemical Reaction of Oxide Film on Aluminum)

  • 이현우;박준민;정상철;정해도;이응숙
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.907-910
    • /
    • 1997
  • With increasing the needs for micro and precision parts, micro machining technology has been studied to fabricate a small part with high density such as electronics, optics, communications, and medicine industry more than before. But there are many problems to be solved requiring a high-level technology. So this research presents the new method to fabricate a small part through applying chemical mechanical micro machining (C3M) for the Al wafer. Al(thickness I ,u m) was sputtered on the Si substrate. Al is widely used as a lightweight material. However form defect such as burr has a bad effect on products. To improve machinability of ductile material, oxide layer was formed on the surface of AI wafcr before grooving by chemical reaction with HN03(10wt%). And then workpieces were machined to compare conventional micro-machining process with newly suggested method at different machining condition such as load and feed rate. To evaluate whether or not the machinability was improved by the effect of chemical condition, such as the size, the width of grooves 'and burr generation were measured. Finally, it is confirmed that C3M is one of the feasible tools for micro machining with the aid of effect of the chemical reaction.

  • PDF

표면 화학 반응이 드릴 가공에 미치는 영향 (The Effect to Drilling by The Chemical Reaction on The Surface)

  • 이현우;최재영;정상철;박준민;정해도;최헌종;이석우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.976-979
    • /
    • 2002
  • This research presents the new method to fabricate small features through applying chemical mechanical micro machining(C3M) for Al5052 and single crystal silicon. To improve machinability of ductile and brittle material, reacted layer was formed on the surface before micro-drilling process by chemical reaction with $HNO_3$(10wt%) and KOH(10wt%). And then workpieces were machined to compare conventional micro-drilling process with newly suggested one. To evaluate whether or not the machinability was improved by the effect of chemical condition, surface defects such as burr, chipping and crack generation were measured. Finally, it is confirmed that C3M is one of the feasible tools for micro machining with the aid of effect of the chemical reaction.

  • PDF

실리콘의 화학기계적 미세가공 특성 (Characterization of the Chemical Mechanical Micro Machining for Single Crystal Silicon)

  • 정상철;박준민;이현우;정해도
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.186-195
    • /
    • 2002
  • The mechanism of micro machining of reacted layer on silicon surface were proposed. The depth of reacted layer and the change of mechanical property were measured and analyzed. Depth of hydrated layer which is created on the surface of silicon by potassium hydrate was analyzed with SEM and XPS. The decrease of the micro victors hardness of silicon surface was shown with the increase of the concentration of potassium hydrate and the change of the dynamic friction coefficient by chemical reacted layer was measured due to the readiness of machining. The experiment of groove machining was done with 3-axis machine with constant load. With chemical mechanical micro machining the surface crack and burrs generated by both brittle and ductile micro machining were diminished. And the surface profile and groove depth was shown in accordance with the machining speed and reaction time with SEM and AFM.