• 제목/요약/키워드: C3H/10T1/2 cells

Search Result 197, Processing Time 0.03 seconds

Protective effects of Camellia sinensis fruit and fruit peels against oxidative DNA damage

  • Ahn, Joung-Jwa;Jang, Tae-Won;Park, Jae-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.237-244
    • /
    • 2021
  • Camellia sinensis, Green tea, contains phenolic compounds that act to scavenge reactive oxygen species (ROS), such as catechin, epicatechin, etc. In contrast with the tea leaf, the bioactivity of its fruit and the fruit peels remains still unclear. This study focused on the effects of fruit and fruit peels of C. sinensis (FC and PC) against oxidative DNA damage in NIH/3T3 cells. The scavenging effects of FC and PC on ROS were assessed using 1,1-diphenyl-2-picryl hydrazyl or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radicals. The measurement of ROS in cellular levels was conducted by DCFDA reagent and the protein expression of γ-H2AX, H2AX, cleaved caspase-3, p53, and, p-p53 was analyzed by immunoblotting. The gene expressions of p53 and H2AX were assessed using polymerase chain reaction techniques. The major metabolites of FC and PC were quantitatively measured analyzed and the amounts of phenolic compounds and flavonoids in PC were greater than those in FC. Further, PC suppressed ROS production, which protects the oxidative stress-induced DNA damage through reducing H2AX, p53, and caspase-3 phosphorylation. These results refer that the protective effects of FC and PC are mediated by inhibition of p53 signaling pathways, probably via the bioactivity of phenolic compounds. Thus, FC and PC can serve as a potential antioxidant in DNA damage-associated diseases.

Comparative Study of Antimicrobial and Cytotoxic Effects of 1, 2-Octanediol and 1, 2-Octanediol Galactoside (1, 2-Octanediol과 1, 2-Octanediol Galactoside의 항균력 및 세포독성 비교연구)

  • Kim, Jun-Sub;Jin, Hong-Jong;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.629-637
    • /
    • 2021
  • To develop a safer cosmetic preservative, we carried out a comparative study on characteristics of OD and OD-gal, where OD-gal was synthesized from OD using E. coli β-gal. OD-gal synthesis was confirmed by mass spectrometry analysis as sodium adduct ion (m/z=331.1731) and protonated ion (m/z=309.1926) of OD-gal. To compare the antimicrobial activities of OD and newly synthesized OD-gal, MIC values were investigated using E. coli, S. aureus, C. albicans, and A. niger. As a result, it was observed that there was no remarkable difference between MIC values of OD and OD-gal. In addition, to compare the cytotoxicity of OD-gal and OD, HaCaT cells were treated with OD or OD-gal, and then cell viability was quantified using EZ-Cytox assay. In the case of 1.5% OD, the cell viability was 64% at 24 h and 42% at 48 h compared to the control, and cell viability of 1.5% OD-gal-treated cells showed no significant change at 24 h and was 85% at 48 h. Consequently, the cytotoxicity of OD-gal-treated cells was reduced by more than 40% when compared with that of OD-treated cells. Thus, the newly synthesized OD-gal in this study is safer than the existing OD used as a cosmetic additive. In the future, OD-gal will be applicable as a substitute for OD as a less toxic preservative for the cosmetic industry.

Effect of Glycyrrhizae Radix on the Immune Responses(I) - Immuno-regulatory Action of 50% Methanol Extract - (감초가 면역반응에 미치는 영향 (I) - 50% 메탄올 엑스의 면역조절작용 -)

  • 한종현;오찬호;은재순
    • YAKHAK HOEJI
    • /
    • v.35 no.3
    • /
    • pp.154-164
    • /
    • 1991
  • These experiments were conducted to investigate the effects of Glycyrrhizae Radix extract(GR) on histamine synthesis, lymphocyte blastogenesis in C57BL/6J mice splenocytes, IL-1 production, $Ca^{2+}$ uptake by macrophage-like P388D$_{1}$ cells and plaque forming cell assay against SRBC. Histamine contents, lymphocyte blastogenesis, IL-1 activity, $Ca^{2+}$ uptake and plaque forming cell were determined by enzyme isotope method, [$^{3}$H]-thymidine incorporation, C3H/HeJ mouse thymocytes proliferation, the addition of 5 $\mu$Ci/ml $^{45}Ca^{2+}$ to P388D$_{1}$ cell suspension and assay to sheep red blood cell, respectively. Cytotoxicity, which was expressed as 50% mortality, was occurred by the addition of GR(10$^{-3}$g/ml). Histamine production in mouse spleen cell culture was significantly increased by 48 hour incubation added 0.25$\mu\textrm{g}$/ml of Con A. Con A-dependent T-lymphocyte proliferation was also enhanced by the addition of 0.25 $\mu\textrm{g}$/ml of Con A. GR depressed histamine contents at 10$^{-9}$~10$^{-4}$g/ml. and Con A (0.25 $\mu\textrm{g}$/ml) dependent T-lymphocyte proliferation at 10$^{-5}$~10$^{-4}$g/ml. IL-1 activity was significantly decreased by 10$^{-8}$~10$^{-4}$g/ml of GR. $Ca^{2+}$ uptake was not changed by GR, but antibody production markedly increased at 10.0~50.0 mg/kg of GR. From the above results, it is suggested that GR have immuno-regulatory action; GR decreased cell-mediated immune response and increased antibody production by B lymphocyte at high doses.

  • PDF

Changes of Thyroid Hormone Levels in Plasma of Rats during Cold Exposure (저온환경 적응에 있어서의 갑상선 Hormone의 변동)

  • Lee, H.W.;Kim, W.J.;Hong, S.S.;Kim, H.S.;Hong, S.U.
    • The Korean Journal of Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.37-45
    • /
    • 1981
  • The importance of thyroid hormones for the survival of rats in the cold is along-established fact. Hypothyroid animals are unable to survive in a cold environment. It was also reported that acute exposure of rats, guinea pigs and rabbits to cold produced an increased secretion of TSH and thereby thyroid hormone secretion within 10 to 30 min, but this increase of thyroid activity disappeared quite rapidly during warming. However, in human study no significant difference was found in the concentration of $T_4$, TSH and cortisol between summer and winter. But plasma $T_3$ concentration was increased significantly in winter in 56 adult men. On the other hand, it has been also known that catecholamines are important in the maintenance of body temperature of rat exposured to cold. Abundant evidences suggest that the sympathetic nervous system is involved in the activation of nonshivering thermogenesis and that thyroid hormone metabolism and secretion are influenced by catecholamines and consequently by the activity of the sympatheticadrenal system. Many of the metabolic effects of catecholamines are associated with an increase in the level of cAMP mediated through activation of adenylate cyclase which converts ATP to cAMP. Other studies have shown that thyroid hormones affect the amount of adenylate cyclase present in the adipose tissue. On the other hand. it was also reported that a particulate cAMP phosphodiesterase activity in fat cells was modulated by the action of thyroid hormones. The objective of the present study was to determine the interaction between thyroid activity and cyclic nucleotides during acute exposure to cold. Albino rats weighing around 200 g were used as the experimental animal. The room temperature group was kept at $25^{\circ}C$ and the cold-exposured group was kept at $4^{\circ}C$ for 1 week or 2 weeks. Each group was subdivided into three subgroups; control, KI, and MTU group. At the end of experiment the animals were etherized and blood was taken from abdominal aorta for $T_4,\;T_3$ and cyclic nucleotides. The determinations of $T_3,\;T_4$ and cyclic nucleotides were carried out with a radioimmunoassay(RIA) method. The results were summerized as followings. 1) A significant increase of thyroid weight was observed in rats exposured to cold for 2 weeks. Furthermore, in rats administered MTU while to exposure to cold the thyroid weight was also increased significantly. 2) After 2 weeks $T_3$ concentration in the plasma of cold-exposured rats was significantly increased in KI group and MTU group as well as in control group. On the contrary, after 2 weeks of cold exposure $T_4$ level was decreased in control group. 3) In the case of cyclic nucleotides, plasma cAMP was increased in the control group after 1 or 2 weeks of cold exposure. However, cAMP level in plasma was rather significantly decreased in KI group and MTU group as well as in control group.

  • PDF

A Co-inhibitory Molecule, B7-H4, Synergistically Potentiates Oral Tolerance by Inducing CD4+CD25+FoxP3+ T Cells

  • Wen, Lanying;Yang, Sung-Yeun;Choi, Jae-Kyoung;Kim, Young-Hee;Kwon, Eun-Hee;Lee, Hyun-Ji;Jeoung, Hae-Young;Hwang, Du-Hyeon;Hwang, Dong-Jin;Choi, In-Hak
    • IMMUNE NETWORK
    • /
    • v.8 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • Background: A co-inhibitory molecule, B7-H4, is believed to negatively regulate T cell immunity by suppressing T cell proliferation and inhibiting cytokine production. However, the mechanism behind B7-H4-mediated tolerance remains unclear. Methods: Balb/c $(H-2^d)$ mice were fed with dendritic cell line, DC2.4 $(H-2^d)$ every day for 10 days. Meantime, mice were hydrodynamically injected with recombinant plasmid expressing B7-H4 fusion protein (B7-H4.hFc) or hFc via tail vein. One day after last feeding, mice were immunized with allogeneic B6 spleen cells. 14 days following immunization, mice were challenged with B6 spleen cells to ear back and the ear swelling was determined the next day. Subsequently, a mixed lymphocyte reaction (MLR) was also performed and cytokines profiles from the reaction were examined by sandwich ELISA. Frequency of immunosuppressive cell population was assayed with flow cytometry and mRNA for FoxP3 was determined by RT-PCR. Results: Tolerant mice given plasmid expressing B7-H4.hFc showed a significant reduction in ear swelling compared to control mice. In addition, T cells from mice given B7-H4.hFc plasmid revealed a significant hyporesponsiveness of T cells against allogeneic spleen cells and showed a significant decrease in Th1 and Th2 cytokines such as IFN-${\gamma}$, IL-5, and TNF-${\alpha}$. Interestingly, flow cytometric analysis showed that the frequency of CD4+CD25+FoxP3+ Tregs in spleen was increased in tolerant mice given recombinant B7-H4.hFc plasmid compared to control group. Conclusion: Our results demonstrate that B7-H4 synergistically potentiates oral tolerance induced by allogeneic cells by increasing the frequency of FoxP3+ CD4+CD25+ Treg and reducing Th1 and Th2 cytokine production.

Biphasic effects of TGFβ1 on BMP9-induced osteogenic differentiation of mesenchymal stem cells

  • Li, Rui-Dong;Deng, Zhong-Liang;Hu, Ning;Liang, Xi;Liu, Bo;Luo, Jin-Yong;Chen, Liang;Yin, Liangjun;Luo, Xiaoji;Shui, Wei;He, Tong-Chuan;Huang, Wei
    • BMB Reports
    • /
    • v.45 no.9
    • /
    • pp.509-514
    • /
    • 2012
  • We have found that the previously uncharacterized bone morphogenetic protein-9 (BMP9) is one of the most osteogenic factors. However, it is unclear if BMP9 cross-talks with $TGF{\beta}1$ during osteogenic differentiation. Using the recombinant BMP9 adenovirus, we find that low concentration of rh$TGF{\beta}1$ synergistically induces alkaline phosphatase activity in BMP9-transduced C3H10T1/2 cells and produces more pronounced matrix mineralization. However, higher concentrations of $TGF{\beta}1$ inhibit BMP9-induced osteogenic activity. Real-time PCR and Western blotting indicate that BMP9 in combination with low dose of $TGF{\beta}1$ potentiates the expression of later osteogenic markers osteopontin, osteocalcin and collagen type 1 (COL1a2), while higher concentrations of $TGF{\beta}1$ decrease the expression of osteopontin and osteocalcin but not COL1a2. Cell cycle analysis reveals that $TGF{\beta}1$ inhibits C3H10T1/2 proliferation in BMP9-induced osteogenesis and restricts the cells in $G_0/G_1$ phase. Our findings strongly suggest that $TGF{\beta}1$ may exert a biphasic effect on BMP9-induced osteogenic differentiation of mesenchymal stem cells.

Multifunctional Probiotic and Functional Properties of Lactiplantibacillus plantarum LRCC5314, Isolated from Kimchi

  • Yoon, Seokmin;Cho, Hyeokjun;Nam, Yohan;Park, Miri;Lim, Ahyoung;Kim, Jong-Hwa;Park, Jaewoong;Kim, Wonyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.72-80
    • /
    • 2022
  • In this study, the survival capacity (acid and bile salt tolerance, and adhesion to gut epithelial cells) and probiotic properties (enzyme activity-inhibition and anti-inflammatory activities, inhibition of adipogenesis, and stress hormone level reduction) of Lactiplantibacillus plantarum LRCC5314, isolated from kimchi (Korean traditional fermented cabbage), were investigated. LRCC5314 exhibited very stable survival at ph 2.0 and in 0.2% bile acid with 89.9% adhesion to Caco-2 intestinal epithelial cells after treatment for 2 h. LRCC5314 also inhibited the activities of α-amylase and α-glucosidase, which are involved in elevating postprandial blood glucose levels, by approximately 72.9% and 51.2%, respectively. Treatment of lipopolysaccharide (LPS)-stimulated RAW 264.7 cells with the LRCC5314 lysate decreased the levels of the inflammatory factors nitric oxide, tumor necrosis factor (TNF-α), interleukin (IL)-1β, and interferon-γ by 88.5%, 49.3%, 97.2%, and 99.8%, respectively, relative to those of the cells treated with LPS alone. LRCC5314 also inhibited adipogenesis in differentiating preadipocytes (3T3-L1 cells), showing a 14.7% decrease in lipid droplet levels and a 74.0% decrease in triglyceride levels, as well as distinct reductions in the mRNA expression levels of adiponectin, FAS, PPAR/γ, C/EBPα, TNF-α, and IL-6. Moreover, LRCC5314 reduced the level of cortisol, a hormone with important effect on stress, by approximately 35.6% in H295R cells. L. plantarum LRCC5314 is identified as a new probiotic with excellent in vitro multifunctional properties. Subsequent in vivo studies may further demonstrate its potential as a functional food or pharmabiotic.

Sinomonas terrae sp. nov., Isolated from an Agricultural Soil

  • Hyosun Lee;Ji Yeon Han;Dong-Uk Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.909-914
    • /
    • 2023
  • While searching for the bacteria which are responsible for degradation of pesticide in soybean field soil, a novel bacterial strain, designated 5-5T, was isolated. The cells of the strain were Gram-staining-positive, aerobic and non-motile rods. Growth occurred at 10-42℃ (optimum, 30℃), pH 5.5-9.0 (optimum, pH 7.0-7.5), and 0-2% (w/v) NaCl (optimum, 1%). The predominant fatty acids were C15:0 anteiso, C17:0 anteiso, and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The predominant menaquinone was MK-9 (H2). Diphosphatidylglycerol, glycolipids, phosphatidylinositol, and phosphatidylglycerol were the major polar lipids. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain 5-5T is a member of the genus Sinomonas and its closest relative is Sinomonas humi MUSC 117T, sharing a genetic similarity of 98.4%. The draft genome of strain 5-5T was 4,727,205 bp long with an N50 contig of 4,464,284 bp. Genomic DNA G+C content of strain 5-5T was68.0 mol%. The average nucleotide identity (ANI) values between strain 5-5T and its closest strains S. humi MUSC 117T and S. susongensis A31T were 87.0, and 84.3 % respectively. In silico DNA-DNA hybridization values between strain 5-5T and its closest strains S. humi MUSC 117T and S. susongensis A31T were 32.5% and 27.9% respectively. Based on the ANI and in silico DNA-DNA hybridization analyses, the 5-5T strain was considered as novel species belonging to the genus Sinomonas. On the basis of the results from phenotypic, genotypic and chemotaxonomic analyses, strain 5-5T represents a novel speciesof the genus Sinomonas, for which the name Sinomonas terrae sp. nov. is proposed. The type strain is 5-5T (=KCTC 49650T =NBRC 115790T).

Studies on the Cellular Metabolism in Microorganisms as Influenced by Gamma-irradiation.(II) - On the Respiration Rate and Dehydrogenase Actibity in Yeast Cells Irradiated by $\gamma$-ray. (미생물의 세포생리에 미치는 전이방사선의 영향에 관한 연구 (제 2보) - 효모균의 산소호흡기및 탈수소효소능에 대한 $\gamma$-ray 의 영향)

  • 김종협
    • Korean Journal of Microbiology
    • /
    • v.5 no.2
    • /
    • pp.69-78
    • /
    • 1967
  • Kim, Jong Hyup, (Div. of Biology, Atomic Energy Research Institute.) Studies on the Cellular Metabolism in Microorganisms as influenced by Gamma-irradiation(II). On respiration rate and dehydrogenase activity of yeast cells irradiated by gamma ray from cobalt-60. 1. Oxygen uptake rate of the gamma irraiated yeast cells had been measured with Warburg's manometer, and the $O_{2}$-uptake was compared with those of normal cells. The rate of endogetious respiration increases in its $O_2$-uptake at 150, 000 rentgen dose, and at higher rentoen doses it was decreased. Exogenous respiration begin to decrease in its O_2$-uptake at 5, 000r. doses of irradiation, further decrease with increasing of doses unproportionally. 2. It appears that plasma-membrane and nuclear membrane of yeast cells have changed and denatured by gamma-irradiation, as exogenous respiration of glucose had been decreased at a dose of 200, 000r's irradiation. 3. The activity of glucose, alcoholic, lactic, succinic and glutamic deliydrogenase (G.D.H., A.D.H., L.D.H., S.D.11., and GL.D.H.) in the gamma irradaited cells had been assayed by T.T.C.(Triphenyl tetrazolium chloride) method and spectrophotometry, the obtained results were compared with those of normal cells. 4. At a dose of and 10, 000 rentgens' irradiation of gamma ray, the activty of each debydrogenase (G.D.H., A.D.H., L.D.H., ) shows a sharp and highest peak in optical absorbalicy, but each abtivity of S.D.H and Gl.D.H shows its' maximum peak at a dose of 30, 000r. 5. The curve of each dehydrogenase activity was found to be rhythmical according to dose-rate of gamma irradiation. 6. Comparing with activity of debydrogenase each other, the maximum peak in optical absorbency can be arranged according to order as follows; glucose > alcoholoic > lactic > glutamic > succinic, this order is identical to the order of breakdown utility in respiration of normal yeast cells. 7. The activity of dehydrogenase experimented exhibit a resistance against gamma irradiation at lethal dose of cells, and the activity of dehydrogenase are found to be much resistant than those of respiratory system. We may assume that the membrane substrate of mitochondria or cytoplasm had been destructed by gamma-irradiation much more than that of dehydronase system.

  • PDF

Methanol Extract of Cinnamomum cassia Represses Cellular Proliferation and Gli-mediated Transcription in PANC-1 Human Pancreatic Cancer Cells

  • Lee, Hwa Jin
    • Natural Product Sciences
    • /
    • v.20 no.3
    • /
    • pp.170-175
    • /
    • 2014
  • Twenty five methanolic plant extracts were investigated to determine the anticancer activity against sonic hedgehog (shh)/Gli signaling pathway dependent cancer, PANC-1 human pancreatic cancer cells, through three screening programs. All extracts were inspected their inhibitory properties on sonic hedgehog-conditioned medium (shh-CM) induced alkaline phosphatase (ALP) activity in C3H10T1/2 mouse mesenchymal stem cells to examine whether the plant extracts affect the shh/Gli signaling pathway. Next, plant extracts were screened the ability to suppress the cell proliferation of PANC-1 human pancreatic cancer cells. Finally, active plant extracts from the two screening systems were evaluated for the suppressive effect on Gli-mediated transcriptional activity in PANC-1 cells. Among active plants, Cinnamomum cassia suppressed Gli-mediated transcriptional activity leading to the down-regulated expression of Gli-target genes such as Gli-1 and Patched-1 (Ptch-1). This study provides the consideration for the important role of natural products in drug discovery process as well as the basis for the further analysis of active plant and potential identification of novel bioactive compounds as inhibitors of Gli and therapeutic candidates against shh/Gli signaling pathway dependent cancers.