• Title/Summary/Keyword: C2 screw

Search Result 237, Processing Time 0.021 seconds

Changes In Mechanical Strength of Compression HIP Screws in Relation to Design Variations - A Biomechanical Analysis

  • Moon S. J.;Lee H. S.;Jun S. C.;Jung T. G.;Ahn S. Y.;Lee H.;Lee S. J.
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.2
    • /
    • pp.123-127
    • /
    • 2005
  • Compression Hip Screw (CHS) is one of the most widely-used prostheses for the treatment of intertrochanteric fractures because of its strong fixation capability. Fractures at the neck and screw holes are frequently noted as some of its clinical drawbacks, which warrant more in-depth biomechanical analysis on its design variables. The purpose of this study was to evaluate changes in the strength with respect to the changes in design such as the plate thickness and the number of screw holes. Both mechanical test and FEM analysis were used to systematically investigate the sensitivities of the above-mentioned design variables. For the first part of the mechanical test, CHS (n=20) were tested until failure. The CHS specimens were classified into four groups: Group Ⅰ was the control group with the neck thickness of 6-㎜ and 5 screw holes on the side plate, Group Ⅱ 6-㎜ thick and 8 holes, Group Ⅲ 7.5-㎜ thick and 5 holes, and Group Ⅳ 7.5-㎜ thick and 8 holes. Then, the fatigue test was done for each group by imparting 50% and 75% of the failure loads for one million cycles. For the FEM analysis, FE models were made for each group. Appropriate loading and boundary conditions were applied based on the failure test results. Stresses were assessed. Mechanical test results indicated that the failure strength increased dramatically by 80% with thicker plate. However, the strength remained unchanged or decreased slightly despite the increase in number of holes. These results indicated the higher sensitivity of plate thickness to the implant strength. No fatigue failures were observed which suggested the implant could withstand at least one million cycles of fatigue load regardless of the design changes. Our FEM results also supported the above results by showing a similar trend in stress as those of mechanical test. In summary, our biomechanical results were able to show that plate thickness could be a more important variable in design for reinforcing the strength of CHS than the number of screw holes.

Effect of System Parameters on Target Parameters in Extrusion Cooking of Corn Grit by Twin-Screw Extruder (옥분 압출가공시 이축압출성형기의 System Parameters에 따른 압출물의 특성변화)

  • Kim, Ji-Yong;Kim, Chong-Tai;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.88-92
    • /
    • 1991
  • To analyze the effects of the system parameters on the target parameters, which include the amount of water evaporation, water solubility index(WSI) and water absorption index(WAI), test trials of fractional factorial design of the three process variables at three levels were carried out for corn grit with a laboratory twin-screw extruder with three different screw configurations. The system parameters collected from the trials, such as extrusion temperature, specific mechanical energy input(SME) and mean residence time(RT), were showed the ranges of $129{\sim}182^{\circ}C$, $67{\sim}163\;kwh/ton$ and $12{\sim}34\;sec$, respectively. Within these ranges of the system parameters, the target parameters were able to be quantified by using multiple regression equations. The correlation of results with the system parameters blocked by the screw configuration as dependent variables, yield correlation coefficients above 0.90, and the correlation using the system parameters obtained from whole experiment system as the dependent variables yield correlation coefficients around 0.80. The functional relationship, which can be quantified by second order polynomial regression equation with only two system parameters within necessary degree of accuracy, can he graped in three dimensional surface response and contour diagrams.

  • PDF

A study on the process optimization of microcellular foaming injection molded air-conditioner drain pen (화학적 초미세 발포 사출성형을 이용한 에어컨 드레인 펜의 공정 최적화에 대한 연구)

  • Kim, Joo-Kwon;Kwak, Jae-Seob;Kim, Jun-Min;Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • In this study, we applied microcellular foaming injection molding process to improve the performance of system air-conditioner drain fan which had been produced by injection molding process and studied the optimization of process conditions through 6-sigma process and response surface method (RSM) to reduce weight and deformation of products. Additive type, melt temperature, mold temperature, and injection screw shape were selected as the factor affecting the weight and deformation of the products by carrying out analysis of trivial many through ANOVA and design of experiment (DOE) method. Among the effect factor, we set the addictive type to Long G/F and screw shape to foaming screw which had the highest level of weight reduction and deformation reduction. The amount of foaming agent gas was set at 60 ml, which was the limit beyond which the weight of product did not decrease any more. For melt temperature and mold temperature, we studied the conditions where both weight and deformation were minimized using the RSM. As a result, we set the melt temperature to $250^{\circ}C$, fixed mold temperature to $20^{\circ}C$, and moving mold temperature to $40^{\circ}C$. The improvement effect was analyzed by appling the selected optimal conditions to the production process using the microcellular foaming injection molding. The results showed that the mean weight of product was measured to be 1,420g which was 19% lower than that measured in the current process. The standard deviations of the weights were found to be similar to those in the current process and it showed a low dispersion. The mean deformation was measured to be 0.9237mm, which represented a 57% reduction compared to the mean deformation in the current process, and the standard deviation decreased from 0.3298mm to 0.1398mm. Moreover, we analyzed the process capability for deformation, and the results showed that the short-term process capability increased from 2.73 to 6.60 which was even higher than targeted level of 6.0.

Chemical Components of Red, White and Extruded Root Ginseng (홍삼 . 백삼 및 압출성형 건조수삼의 성분특성)

  • Ha, Dae-Chul;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.247-254
    • /
    • 2005
  • The objective of this study is to compare the chemical properties of red ginseng, white ginseng, and extruded ginseng. Six kinds of samples were prepared and examined their chemical components. The comparison among crude ash, crude lipid, and total sugar resulted insignificant difference. White ginseng had lower content of reducing sugar than those of extruded ginseng and red ginseng. Total amino acid was found relatively low in treatment A (sliced whole root and dried at 7$0^{\circ}C$). Total amino acid of treatment C (extruded dry whole root ginseng slices, moisture content 30%, barrel temperature 11$0^{\circ}C$, and screw speed 200 rpm) was higher than that of treatment B (extruded dry whole root slices, moisture content 25%, barrel temperature 11$0^{\circ}C$, and screw speed 200 rpm). Crude saponin of treatments A, B, C, D (white ginseng with skin), E (skinless white ginseng), and F (red ginseng) were 4.02, 4.77, 4.12, 3.56, 3.25, and 4.02%, respectively. Ginsenoside was contained similarly as crude saponin. The amount of ginsenoside in the treatment of A, B, C, D, E, and F was recorded respectively at 6.031, 8.108, 6.876, 7.978, 5.591, and 9.834 mg/g. A specific component in red ginseng, $R_{g3}$ was detected in treatment F. Maltol was detected in treatment Band F. Acidic polysaccharide was increased 2∼3% by extrusion process. In conclusion, extruded ginseng had similar components to those of red ginseng.

The Crytal and Molecular Structure of Morpholinothiosemicarbazide (Morpholinothiosemicarbazide의 結晶 및 分子構造)

  • Chung Hoe Koo;Hoon Sup Kim;Hyun So Shin;Yungja Lee
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.105-114
    • /
    • 1973
  • The crystal structure of morpholinothiosemicarbazide has been determined by single crystal X-ray analysis. The lattice constants are a = 4.19(2), b = 6.56(2) and c = 26.67(4)${\AA}$. The unit cell contains 4 molecules and the space group is$P2_12_12_1$. The atomic parameters have been refined by least-squares method to a final R value of 0.07, based on the 651 observed reflexions. The amino nitrogen atom forms hydrogen bonds to the sulfur atoms of the other molecules related by the two-fold screw axis parallel to the a-axis, the distances of the hydrogen bonds being 3.48 and 3.49${\AA}$. On the other hand, the imino nitrogen atom forms a hydrogen bond to the amino nitrogen atom of the other molecule related by the two-fold screw axis parallel to the a-axis, the distance of the hydrogen bond being 3.04${\AA}$. These three hydrogen bonds arrange the molecules around the two-fold screw axis. Apart from the hydrogen bonding system the structure is held together by van der Waals forces.

  • PDF

A Study on the Dyeing Properties of Slack-Mercerized Cotton with Reactive Dyes (무장력 머어서화 면에 대한 반응성 염료의 염색성에 관한 연구)

  • Choi, Chul-Ho;Lee, Won-Hee;Lee, Chan-Min
    • Textile Coloration and Finishing
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 1991
  • The influences, that various mercerization conditions had on the dying property of cotton fiber, were studied. Crystallization degrees accompained by lattice transformation of slack-mercerized cotton by IR spectroscopic analysis and morphology of the slack-merceized cotton by SEM were observed in this research. The above results were as follows; 1. Equilibrium dye adsorption rates of slack-mercerized cotton with C. I. Reactive Blue 19 were gained in the case of 8M NaOH, $10^{\circ}C$, 20 min., about 2 times as large as the rates of untreated cotton and gained about 2.5 times in the case of 8M $NH_3$, $10^{\circ}C$, , 20 min. 2. Equilibrium dye adsorption rates of slack-mercerized cotton with C. I. Reactive Blue 2 were gained in the case of 2M NaOH, $10^{\circ}C$, 20 min., about 1.7 times as large as the rates of untreated cotton and gained about 2.4 times in the case of 8M $NH_3$, $10^{\circ}C$, 20 min. 3. It was confirmed by SEM that untreated cotton fibrils are formed in the shape of screw and treated cotton is rearranged in the direction of fiber axis.

  • PDF

Manufacture of Pork Rind Snack by Extrusion Cooking Process (압출성형 공정을 이용한 돈피스낵의 제조)

  • Yang, S.Y.;Kim, Y.H.;Kim, C.J.;Lee, M.H.;Lee, C.H.
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.451-455
    • /
    • 1990
  • The extrusion characteristics of pork rind mixed with corn flour were investigated. The blends of pork rind to corn flour in the ratio of 1 : 2, 1 : 1, 2 : 1 and 3 : 1(w/w) were made and each blend was dried up to 5, 10 and 15% moisture content. The blends were extruded by single screw extruder. The extrusion characteristics of each extrudate were as follow. The highest value of expansion ration was attained by mixing pork rind and corn flour in the ratio of 1 : 1, containing 5% moisture content. As the rind content to the corn flour mixture was increased, the bulk density, water absorption index, breaking stregth and redness, of the extradate increased, but the lightness and yellowness decreased. It was concluded that a high quality snack food could by produced by extrusion-cooking the mixture of pork rind and corn flour.

  • PDF

The crystal and molecular structure of chlorpropamide

  • Koo, Chung-Hoe;Cho, Sung-Il;Yeon, Young-Hee
    • Archives of Pharmacal Research
    • /
    • v.3 no.1
    • /
    • pp.37-49
    • /
    • 1980
  • Chlorpropamide, $C_{10}H_{13}N_{2}O_{3}SCI$, forms orthofombic crystals of space group $P_{2}_{ 1}2_{1}2_{1}$ with a 9.066 $\pm$ 0.004, b = 5.218 $\pm$ 0.003, c = 26, 604 $\pm$, 0.008 $\AA$, and four molecules per cell. Three dimensional photographic data were collected with Mo-K$\alpha$ radiation. The structure was determined using Patterson, Fourier and Difference syntheses methods and refined by the block-diagonal least-squares methods with anisotropic thermal parameters for all nonhydrogen atoms and isotropic thermal parameters for all hydrogen atomes. The final R value was 0.10 for the 1823 observed independent reflections. The dihedral angle between the planes through the benzene ring and the urea goup is 99$^{\circ}$. The conformational angle formed by the projection of the S-C(1) with that of N(1)-C(7) when the projection is taken along the S-N(1) bond is 76$^{\circ}$. The molecule appears to form with neighbouring molecules two hydrogen bonds, N(1)..H...O(3) and N(2)-H...0(2) of lengths 2.774 and 2.954$\AA$ respectively related by screw diads parallel to the a axis. Adjacent molecules parallel to b and c axis are bound together by van der Wasls forces.

  • PDF

A Study on the Cutting and Vibration Characteristic of Ultrasonic Vibration Cutting (초음파 진동선삭에서의 절삭 및 진동특성에 관한 연구)

  • 이규배;임영호;이계철
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.147-154
    • /
    • 1994
  • In this study, ultransonic vibration cutting system was contructed by installing throw-away-tool tip (KT 350) by screw lock on the bending vibration mode in free-free beam. During the conventional cutting and ultransonic conventional cutting of SM45C, variations of cutting force, roughness and acceleration were measured. The results were compared and analyzed in detail, and it was found that the ultransonic vibration cutting was more effective in reducing cutting force compareed with the conventional cutting .

  • PDF

Optimization of Extrusion Process Conditions to Increase the Corn Fiber Gum and Soluble Arabinoxylan Yield from Corn Fiber (옥수수 섬유질로부터 검과 수용성 아라비노자일란의 수율향상을 위한 압출성형 조건의 최적화)

  • Jeon, Sujung;Ryu, Gihyung
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.149-157
    • /
    • 2015
  • The effects of feed moisture content (25, 35, and 45%), screw speed (230, 250, and 270 rpm), and barrel temperature (130, 140, and $150^{\circ}C$) on the product yield and soluble arabinoxylan (SAX) content from destarched corn fiber (DCF), and its optimization were investigated. The yield and SAX content of corn fiber gum (CFG) from the extruded destarched corn fiber (EDCF) were higher than those of DCF. Statistical analyses revealed that the feed moisture content and barrel temperature had a significant effect on the CFG yield and total SAX content. The optimum extrusion pretreatment conditions were as follows: feed moisture content, 30%; screw speed, 260 rpm; barrel temperature, $133^{\circ}C$. This study showed that the response surface methodology was suitable for the optimization of the extrusion conditions used to maximize the CFG yield and total SAX content from EDCF.