• Title/Summary/Keyword: C-terminal deletions

Search Result 7, Processing Time 0.02 seconds

Biological Function of Single Chain Equine Chorionic Gonadotiopin Mutants(C-terminal Deletions)

  • ;;;;N.P JarGil
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.210-210
    • /
    • 2004
  • Equinechorionic gonadotropin(eCG) is a member of the glycoprotein hormone family which includes FSH, hCG, TSH. These hormone family is characterized by a heterodimeric structure composed a common α-subunit noncovalently linked to a hormone specific β-subunit. To determine a and β-subunits can be synthesized as a single polypeptide chain (tethered-eCG) and also display biological activity, the tethered-molecule by fusing the carboxyl terminus of the eCG β-subunit to the amino terminus of the α-subunit was constructed and transfected into chinese hamster ovary (CHO-K1) cells. (omitted)

  • PDF

A Plausible Method for the Diagnosis of Genetic Disorders Using Full Length cDNA

  • Hur, Hyang-Suk;Lee, Young-Won;Park, Hyoung-Woo;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • A cDNA of coagulation Factor IX gene has been screened from the $\lambda$gt11 human fetal liver cDNA library, and used to construct a 2.8-kb full length cDNA after recombining with the N-terminal fragment from pTZ-FIX. Human genomic DNA was isolated, digested with the restriction endonucleases, TaqI, EcoRI, and HindIII, and Southern hybridization was performed using the full length factor IX cDNA as a probe. The hybridized bands generated by the restriction endonucleases were the followings: TaqI, 0.3, 1.0, 1.6, 1.8, 2.7, 3.7, and 5.3 kb bands; EcoRI, 1.8, 4.8, 4.9, 5.5, 6.8, and 12.6 kb bands; HindIII, 4.1, 4.4, 5.2, 5.8, 7.6, and 12.5 kb bands. When the Southern bands were physically mapped along the genome, about 50-kb continuous region harboring almost all of the genomic region of Factor Ⅸ gene was covered. These results suggest a possibility of using an exonal cDNA probe to diagnose abnormalities including large deletions, insertions, and rearrangements along the genome, if there is any.

  • PDF

Targeting of Nuclear Encoded Proteins to Chloroplasts: a New Insight into the Mechanism

  • Lee, Yong-Jik;Kim, Yong-Woo;Pih, Kyeong-Tae;Hwang, Inhwan
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.407-409
    • /
    • 2000
  • Outer envelope membrane proteins of chloroplasts encoded by the nuclear genome are transported without the N-terminal transit peptide. Here, we investigated the targeting mechanism of AtOEP7, an Arabidopsis homolog of small outer envelope membrane proteins in vivo. AtOEP7 was expressed transiently in protoplasts or stably in transgenic plants as fusion proteins with GFP. In both cases AtOEP7:GFP was targeted to the outer envelope membrane when assayed under a fluorescent microscope or by Western blot analysis. Except the transmembrane domain, deletions of the N- or C-terminal regions of AtOEP7 did not affect targeting although a region closed to the C-terminal side of the transmembrane domain affected the targeting efficiency. Targeting experiments with various hybrid transmembrane mutants revealed that the amino acid sequence of the transmembrane domain determines the targeting specificity The targeting mechanism was further studied using a fusion protein, AtOEP7:NLS:GFP, that had a nuclear localization signal. AtOEP7:NLS:GFP was efficiently targeted to the chloroplast envelope despite the presence of the nuclear localization signal. Taken together, these results suggest that the transmembrane domain of AtOEP7 functions as the sole determinant of targeting specificity and that AtOEP7 may be associated with a cytosolic component during translocation to the chloroplast envelope membrane.

  • PDF

Design and Engineering of Antimicrobial Peptides Based on LPcin-YK3, an Antimicrobial Peptide Derivative from Bovine Milk

  • Kim, Ji-Sun;Jeong, Ji-Ho;Kim, Yongae
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.381-390
    • /
    • 2018
  • We have previously derived a novel antimicrobial peptide, LPcin-YK3(YK3), based on lactophoricin and have successfully studied and reported on the relationship between its structure and function. In this study, antimicrobial peptides with improved antimicrobial activity, less cytotoxicity, and shorter length were devised and characterized on the basis of YK3, and named YK5, YK8, and YK11. The peptide design was based on a variety of knowledge, and a total of nine analog peptides consisted of one to three amino acid substitutions and C-terminal deletions. In detail, tryptophan substitution improved the membrane perturbation, lysine substitution increased the net charge, and excessive amphipathicity decreased. The analog peptides were examined for structural characteristics through spectroscopic analytical techniques, and antimicrobial susceptibility tests were used to confirm their activity and safety. We expect that these studies will provide a platform for systematic engineering of new antibiotic peptides and generate libraries of various antibiotic peptides.

Analysis of Human O-GlcNAcase Gene and the Expression of the Recombinant Gene. (사람의 O-linked N-acetyl-$\beta$-D-glucosaminidase 유전자의 분석과 재조합 발현)

  • 강대욱;서현효
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.87-93
    • /
    • 2004
  • Dynamic modification of cytoplasmic and nuclear proteins by O-linked N-acetylglucosamine (O-GlcNAc) on Ser and Thr residues is ubiquitous in higher eukaryotes. And this modification may serve as a signaling mod-ification analogous to protein phosphorylation. Addition and cleavage of O-GlcNAc are catalyzed by O-linked GlcNAc transferase (OGT) and O-linked N-acety1glucosaminidase (O-GlcNAcase), respectively. Two types of human O-GlcNAcase gene were cloned and expressed as three fusion proteins in Escherichia coli. O-GlcNA-case activity showed in the order of thioredoxin fusion> $6{\times}His$ tag> GST fusion. O-GlcNAcase had enzy-matic activity against only ${\rho}$NP-GlcNAc of seven tested substrate analogs. Blast search revealed that O-GlcNAcase has two conserved domains, amino terminal hyaluronidase-like domain and carboxy terminal N-acetyltransferase domain. Extensive deletion studies were done to define catalytically important domains. The deletions of hyaluronidase-like domain and N-acetyltransferase domain abolished enzyme activity. But, N-ter-minal 55 amino acid deletion and C-terminal truncation showed lower activity. Based on deletion analysis, we suggest that hyaluronidase-like domain is essential for enzyme activity and carboxy terminal N-acetyltrans-ferase domain may be modulatory function.

Role of C-terminal 7 Amino Acids of N4SSB Protein in Its in vivo Activity (N4SSB 단백질의 C-말단기의 7개의 아미노산이 N4SSB 단백질의 in vivo 활성에 미치는 영향)

  • Choi, Mieyoung
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.248-253
    • /
    • 1998
  • Bacteriophage N4, a lytic phage specific for Esherichia coli K12 strain encodes single-stranded DNA-binding protein, N4SSB (bacteriophage N4-coded single-stranded DNA-binding protein). N4SSB protein is originally identified as a protein required for N4 DNA replication. N4SSB protein is also required for N4 late transcription, which is catalyzed by E. coli ${\sigma}^{70}$ RNA polymerase. N4 late transcription does not occur until N4SSB protein is synthesized. Recently it is reported that N4SSB protein is essential for N4 DNA recombination. Therefore N 4SSB protein is a multifunctional protein required for N4 DNA replication, late transcription, and N4 DNA recombination. In this study, a variety of mutant N4SSB proteins containing internal deletions or substitutions were constructed to define and characterize domains important for N4 DNA replication, late transcription, and N4 DNA recombination. Test for the ill vivo activity of these mutant N4SSBs for N4 DNA replication, late transcription, and N4 DNA recombination was examined. The results suggest that C-terminal 7 amino acid residues are important for the activity of N4SSB. Three lysine residues, which are contained in this region play important roles on N4SSB activity.

  • PDF

Cloning of Low-molecular-weight Glutenin Subunit Genes and Identification of their Protein Products in Common Wheat (Triticum aestivum L.) (보통 밀에서 저분자글루테닌 유전자 클로닝 및 단백질 동정)

  • Lee, Jong-Yeol;Kim, Yeong-Tae;Kim, Bo-Mi;Lee, Jung-Hye;Lim, Sun-Hyung;Ha, Sun-Hwa;Ahn, Sang-Nag;Nam, Myung-Hee;Kim, Young-Mi
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.547-554
    • /
    • 2010
  • Low-molecular-weight glutenin subunit (LMW-GS) in common wheat (Triticum aestivum L.) is important for quality processing of bread and noodles. The objectives of this study were to clarify the composition of LMW-GSs and to identify their corresponding proteins. Using LMW-GS specific primers we cloned and characterized 43 LMW-GS genes in the wheat cultivar 'Jokyoung'. Some of these genes contain polypeptides different in size due to the presence of various deletions or insertions within repetitive and glutamine-rich domains. The comparison of deduced amino acid sequence of the LMW-GS genes in Jokyoung with that of 12 groups LMW-GSs of wheat cultivar Norin 61 showed that the deduced amino acid sequences were nearly the same to LMW-GS groups of 1, 2, 3/4, 5, 7, 10 and 11. All LMW-GS genes contain eight cysteine residues, which are conserved among all of the typical LMW-GS sequences. The relative positions of cysteine residues are also conserved, except those of the first and seventh. Based on phylogenetic analysis, the 43 sequences with the same N-terminal and C-terminal amino acid sequences were clustered in the same group. To identify the proteins containing the corresponding amino acid sequences, we determined the N-terminal amino acid sequence of 7 spots of LMW-GSs of Jokyoung separated by two-dimensional gel electrophoresis (2DE). Of them, Glu-B3 (LMW-m and LMW-s) and Glu-D3 (LMW-m) were detected in two and three spots, respectively and the others were not clear. Collectively, we classified diverse LMW-GSs and identified their corresponding protein products. These results will be helpful in breeding programs for improvement of wheat flour quality.