• Title/Summary/Keyword: C-terminal

Search Result 2,120, Processing Time 0.027 seconds

HEAT-UP AND COOL-DOWN TEMPERATURE-DEPENDENT HYDRIDE REORIENTATION BEHAVIORS IN ZIRCONIUM ALLOY CLADDING TUBES

  • Won, Ju-Jin;Kim, Myeong-Su;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.681-688
    • /
    • 2014
  • Hydride reorientation behaviors of PWR cladding tubes under typical interim dry storage conditions were investigated with the use of as-received 250 and 485ppm hydrogen-charged Zr-Nb alloy cladding tubes. In order to evaluate the effect of typical cool-down processes on the radial hydride precipitation, two terminal heat-up temperatures of 300 and $400^{\circ}C$, as well as two terminal cool-down temperatures of 200 and $300^{\circ}C$, were considered. In addition, two cooling rates of 2.5 and $8.0^{\circ}C/min$ during the cool-down processes were taken into account along with zero stress or a tensile hoop stress of 150MPa. It was found that the 250ppm hydrogen-charged specimen experiencing the higher terminal heat-up temperature and the lower terminal cool-down temperature generated the highest number of radial hydrides during the cool-down process under 150MPa hoop tensile stress, which may be explained by terminal solid hydrogen solubilities for precipitation, and dissolution and remaining circumferential hydrides at the terminal heat-up temperatures. In addition, the slower cool-down rate generates the larger number of radial hydrides due to a cooling rate-dependent, longer residence time at a relatively high temperature that can accelerate the radial hydride nucleation and growth.

Structural and Functional relationship of the recombinant catalytic subunit of pyruvate dehydrogenase phosphatase

  • Kim, Young-Mi;Jung, Ki-Hwa
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2002.05a
    • /
    • pp.215-215
    • /
    • 2002
  • Catalytic subunit of pyruvate dehydrogenase phosphatase (PDPc) has been suggested to have three major funational domains such as dihydrplipoamide adetyltransferase(E2)-binding domain, regulatory subunit of PDP(PDP)r-binding domain, and calcium-binding domain. In order to identify functional domains, recombinant catalytic subunit of pyruvate dehydrogenase phosphatase(rPDPc) was expressed in E. coli JM101 and purified to near homogeneity using the unique property of PDPc: PDPc binds to the inner lipoyl domain (L2) of E2 of ppyruvate dehydrogenase complex (PDC) in the presence of Ca+2, not under EGTA. PDPc was limited-proteolysed by typsin, chymotypsin, Arg-C, and elastase at pH 7.0 and 30C and N-terminal analysis of the fragments was done. Chymotrypsin, trypsin, and elastase made two major fragments: N-terminal large fragment, approx. 50kD and C-terminal small fragment, approx.10 kDa. Arg-C made three major fragments: N-terminal fragment, approx. 35kD, and central fragment, approx. 15 kD, and C-terminal fragment, approx. 10 kD. This study strongly suggest that PDPc consists of three major functional domains. However, further study should be necessary to identify the functional role.

  • PDF

A Microbial D-Hydantoinase is Stabilized and Overexpressed as a Catalytically Active Dimer by Truncation and Insertion of the C-Terminal Region

  • KIM, GEUN-JOONG;HAK-SUNG KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.242-248
    • /
    • 2002
  • Previously, it was reported that the nonhomologous C-terminal regions of the D-hydantoinases are nonessential for catalysis, but affect the oligomeric structure of the enzyme [3]. In an effort to further confirm the above observation, the C-terminal region-inserted enzyme was constructed by attaching a peptide (22 residues) at the C-terminal of the D-hydantoinase from Bacillus thermocatenulatus GH2, and its structural and biochemical properties were compared with both the wild-type and C-terminal region-truncated enzymes. As a result, native tetrameric D-hydantoinase was dimerized as the truncated enzyme, and the inserted mutant with a new sequence was expressed as a catalytically active form in E. coli. Expression level of the inserted and truncated enzymes were found to be significantly increased compared to the level of the wild-type enzyme, and this appears to be due to the reduced toxic effect of the mutant enzymes on host cells. Dimerized enzymes exhibited increased thermo- and pH stabilities considerably when compared with the corresponding wild-type enzyme. Comparison of the substrate specificity between the mutant and wild-type enzymes suggests that the substrate specificity of the D-hydantoinase is closely linked with the oligomeric structure.

Expression of the C-terminal of 34kDa protein of Mycobacterium paratuberculosis (Mycobacterium paratuberculosis의 34kDa C-terminal 단백질의 발현)

  • Kim, Doo;Park, Hyung-wook
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.1
    • /
    • pp.86-93
    • /
    • 2000
  • Paratuberculosis (Johne's disease), a chronic enteritis produced by Mycobacterium paratuberculosis, affects a large proportion of ruminants in all continents and causes important economic losses. The identification of well-characterized and species-specific components of M paratuberculosis would provide the means to improve the specificity and sensitivity of immunodiagnostic assays for Johne's disease. The aims of this study were to express the recombinant C-terminal of 34kDa protein (rC34P) of M paratuberculosis in E coli and to investigate the effectiveness of this protein in detecting antibodies to the native protein in sera from paratuberculosis infected cattle. The C-terminal of the gene encoding the 34kDa protein was amplified by polymerase chain reaction from the chromosomal DNA of M paratuberculosis (ATCC 19698) and cloned into vector pGEX-4T-2. Then, cloned plasmid was transformed into E coli DH5${\alpha}$ and the rC34P was overexpressed. The rC34P was purified by affinity chromatography and gel filtration. The rC34P was examined antigenicity by Western blot. The rC34P was reactive with culture positive bovine serum and hyperimmune rabbit anti-M paratuberculosis serum but was not reactive with culture negative bovine serum and tuberculin positive bovine serum in Western blot. In conclusion, the rC34P produced in this study is expected as a useful candidate for antigen in serological diagnosis of Johne's disease.

  • PDF

Archvillin C-Terminus-Binding Proteins in Human Skeletal Muscle

  • Chang, Goo-Rak
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.207-212
    • /
    • 2010
  • Archivillin, a muscle-specific isoform of supervillin, is a component of the costameric cytoskeleton of muscle cells. The purpose of this study was to determine which protein in the skeletal muscle collaborates with archvillin C-terminus. For this purpose, a yeast two-hybrid screening of human skeletal muscle cDNA library was performed using the C-terminal region of archvillin as bait. This study shows that seven human skeletal muscle proteins, namely, nebulin, xeplin, archvillin, GAPDH, TOX4, PITRM1, and YME1L1 interact with archvillin C-terminus. Especially, xeplin is a newly discovered protein interacts with archvillin C-terminus. These results indicate that archvillin C-terminus acts as a bridge between nebulin and xeplin at costameres. Archvillin C-terminal region interacts with nebulin C-terminal region at Z-discs and interacts with xeplin at the vicinity of sarcolemma. I propose that these interactions may contribute to formation of costameric structure and muscle contraction.

The Influence of the N-Terminal Region of Antimicrobial Peptide Pleurocidin on Fungal Apoptosis

  • Choi, Hyemin;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1386-1394
    • /
    • 2013
  • In our previous study, the 25-mer antimicrobial peptide pleurocidin (Ple) had been thought to induce apoptosis in Candida albicans. This study demonstrated that reactive oxygen species (ROS) production was a major cause of Ple-induced apoptosis. Four truncated analogs were synthesized to understand the functional roles in the N- and C-terminal regions of Ple on the apoptosis. Ple, Ple (4-25), Ple (1-22), and Ple (1-19) produced ROS, including hydroxyl radicals, on the order of [Ple > Ple (1-22) > Ple (4-25) > Ple (1-19)], whereas Ple (7-25) did not induce any ROS production. The results suggested that the N-terminal deletion affected the ROS-inducing activities much more than that of the C-terminal deletion, and net hydrophobicity [Ple > Ple (1-22) > Ple (4-25) > Ple (1-19) > Ple (7-25)] was related to ROS generation rather than other primary factors like net charge. Hence, we focused on the N-terminal-truncated peptides, Ple (4-25) and Ple (7-25), and examined other apoptotic features, including mitochondrial membrane depolarization, caspase activation, phosphatidylserine externalization, and DNA and nuclear fragmentation. The results also confirmed the disappearance of apoptotic activity of Ple (7-25) by the truncation of the N-terminal region (1-6) and the specific activity patterns between Ple and analogs. In conclusion, the N-terminal region of Ple played an important role in apoptosis.

Activated Phenoloxidase Interacts with A Novel Glycine-rich Protein on the Yeast Two-hybrid System

  • Lee, Sun-Woo;Lee, Hyun-Seong;Kim, Eun-Jun;Yoo, Mi-Ae;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • One of the innate immune reactions in invertebrates is the pro-phenoloxidase (pro-PO) activation system that is involved in the generation of superoxide, melanin synthesis, and the subsequent sequestration of foreign matter entering the hemocoel of the invertebrates. However, the molecular mechanism of this biological reaction is still obscure. To expand our understanding of the biological roles of the pro-PO activation system in invertebrates, we performed a yeast two-hybrid screening by using three regions of pro-PO as bait and a yeast two-hybrid cDNA library from Tenebrio molitor larvae as prey We isolated a novel partial cDNA clone that encodes a glycine-rich protein that interacted with the active phenoloxidase (termed phenoloxidase interacting protein, POIP). POIP consists of two domains: One is an N-terminal unique domain and the other is a C-terminal glycine-rich domain. The C-terminal glycine-rich domain showed sequential homology with those of insect antifungal proteins. Also, the yeast two-hybrid screen in a reverse orientation (using POIP as bait) yielded PO, suggesting that the PO-POIP interaction is specific. By using a 315 bP PCR fragment of the N-terminal unique region of POIP, we cloned the full-length cDNA of POIP from the Tenebruo cDNA library constructed by using E. coli injected larvae. The interaction analysis between PO, and a truncated fragment lacking the N-terminal unique region of POIP, indicated that the N-terminal unique region is necessary for interaction between PO and POIP. The expression level of the POIP mRNA is increased by bacterial injection into T. molitor larvae. This suggests that POIP might be engaged in the humoral defense reaction.

  • PDF

Expression of Lymphocyte ADP-ribosyltransferase in Rat Mammary Adenocarcinoma Cells (임파구 ADP-ribosyltransferase의 rat mammary adenocarcinoma cell에서의 발현)

  • 김현주
    • Journal of Life Science
    • /
    • v.8 no.1
    • /
    • pp.102-108
    • /
    • 1998
  • The nascent from of glycosylphosphatidylinositol (GPI)-anchored proteins possesses both amino and carboxy terminal hydrophobic signal sequences to direct processing in the endoplasmic reticulum (ER). Following cleavage of the amino-terminal signal peptide, the carboxy-terminal peptide is processed. Previously, mouse lymphocyte NDA: agrinine ADP-ribosyltransferase (Yac-1) was cloned and the deduced amino acid sequence of the Yac-1 transferase contained hydrophobic amino and carboxy termini, consistent with known signal sequences of GPI-anchored proteins. This tranferase was present on the surface of NMU (rat mammary adenocarcinoma) cells transfected with the wildtype cDNA and was released with phosphatidylinositol-specific phosphilpase C. Expression of the mutant protein, lacking the carboxy terminal hydrophobic sequence, resulted in the peoduction of soluble, secreted from of the transferase. This result shows that carboxy terminal sequence is important for GPI-attachment.

  • PDF

An Analysis on the Container Terminal Operation by Considering the Key Factors for Fluctuating Container Traffic Volume (물동량 변동요인이 터미널 운영에 미치는 영향력 분석에 관한 연구)

  • Jung, Hyun-Jae;Yeo, Gi-Tae
    • Journal of Korea Port Economic Association
    • /
    • v.27 no.1
    • /
    • pp.95-109
    • /
    • 2011
  • The aim of this study is to analyze the container terminal operation by considering the key factors that fluctuates the container traffic volume using the System Dynamics (SD) method. The target area of this study is the 'A' container terminal which is located in the Port of Incheon and the simulation period is from 2004 to 2020. As evaluation indexes for container terminal operation, three factors such as 'total sales', 'operating ratio of C/Y' and 'operating ratio of G/C' are selected, and as for the key factors of fluctuating container traffic volume, 'variation ratio of world trade', 'variation ratio of trade among three countries in North-East Asia' and 'variation ratio of won-dollar rate are used. As of 2020, the result of this study is that import-export container traffic volume increases almost 880,000TEU and total sales and operating ratio of G/C each reach 7.1 bilion won and 65 percent. No changes however in loadage and operating ratio of C/Y in 'A' container terminal are indicated. The reason is that capability of C/Y is exceeded. Therefore this study suggest that decision-makers of 'A' container terminal realize the importance of additional space of C/Y.