• Title/Summary/Keyword: C-MIMO

Search Result 130, Processing Time 0.025 seconds

Enhanced Spatial Covariance Matrix Estimation for Asynchronous Inter-Cell Interference Mitigation in MIMO-OFDMA System (3GPP LTE MIMO-OFDMA 시스템의 인접 셀 간섭 완화를 위한 개선된 Spatial Covariance Matrix 추정 기법)

  • Moon, Jong-Gun;Jang, Jun-Hee;Han, Jung-Su;Kim, Sung-Soo;Kim, Yong-Serk;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.527-539
    • /
    • 2009
  • In this paper, we propose an asynchonous ICI (Inter-Cell Interference) mitigation techniques for 3GPP LTE MIMO-OFDMA down-link receiver. An increasing in symbol timing misalignments may occur relative to sychronous network as the result of BS (Base Station) timing differences. Such symbol synchronization errors that exceed the guard interval or the cyclic prefix duration may result in MAI (Multiple Access Interference) for other carriers. In particular, at the cell boundary, this MAI becomes a critical factor, leading to degraded channel throughput and severe asynchronous ICI. Hence, many researchers have investigated the interference mitigation method in the presence of asynchronous ICI and it appears that the knowledge of the SCM (Spatial Covariance Matrix) of the asynchronous ICI plus background noise is an important issue. Generally, it is assumed that the SCM estimated by using training symbols. However, it is difficult to measure the interference statistics for a long time and training symbol is also not appropriate for MIMO-OFDMA system such as LTE. Therefore, a noise reduction method is required to improve the estimation accuracy. Although the conventional time-domain low-pass type weighting method can be effective for noise reduction, it causes significant estimation error due to the spectral leakage in practical OFDM system. Therefore, we propose a time-domain sinc type weighing method which can not only reduce the noise effectively minimizing estimation error caused by the spectral leakage but also implement frequency-domain moving average filter easily. By using computer simulation, we show that the proposed method can provide up to 3dB SIR gain compared with the conventional method.

Perfonnance Analysis of the Combined AMC-MIMO Systems with MCS Level Selection Method (MCS 레벨 선택 방식에 따른 AMC-MIMO 결합 시스템의 성능 비교)

  • Hwang In-Tae;Kang Min-Goo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.665-671
    • /
    • 2006
  • In this paper, we propose and observe a system that adopts Independent-MCS (Modulation and Coding Scheme) level for each layer in the combined AMC-V-BLAST (Adaptive Modulation and Coding-Vertical-Bell-lab Layered Space-Time) system. Also, comparing with the combined system using Common-MCS level, we observe throughput performance improvement. As a result of simulation, Independent-MCS level case adapts modulation and coding scheme for maximum throughput to each channel condition in separate layer, resulting in improved throughput compared to Common-MCS level case. Especially, the results show that the combined AMC-V-BLAST system with Independent-MCS level achieves a gain of 700kbps in $7dB{\sim}9dB$ SNR (Signal-to-Noise Ratio) range.

Efficient Selection Methods of Transmit-Receive Antennas Based on Channel Capacity For MIMO Systems (MIMO 시스템을 위한 채널 용량에 기반을 둔 송수신 안테나의 효율적인 선택 기법)

  • Kim, Hyo-Shil;Kim, Ryun-Woo;Kim, Jong-Deuk;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1092-1099
    • /
    • 2006
  • Future wireless communication systems will employ spatial multiplexing with multiple antennas at both transmitter and receiver to take advantage of larger capacity gains as compared to the systems that use a single antenna. However, in order to reduce higher hardware costs and computational burden, it will require an efficient transmit-receive antenna selection algorithm, which we propose in this paper. Through simulation and comparative analysis of various existing methods and the one we propose in this paper, the algorithm we propose was validated as nearer to the optimal selection technique than existing nearly optimal antenna selection schemes.

The Performance Improvement of MIM0-UWB Systems with Multiband Scheme (멀티밴드 방식을 적용한 MIM0-UWB 시스템의 성능 개선)

  • Lee, Jun-Haeng;Kim, Su-Nam;Kim, Ki-Doo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1306-1315
    • /
    • 2004
  • UWB, which is now in a process of being standardized in WPAN communication, has some problems such as difficulty of implementation and interference with existing systems. To overcome these problems we will explain the MIMO structure to alleviate difficulties of implementation. In this paper we propose the UWB transceiver structure using multiband scheme to mitigate narrow band interference from PCS Of WLAN which is widely used these days and analyze the effect of noise and narrow band interference by simulation based on numerical analysis.

Lattice Reduction Aided Preceding Based on Seysen's Algorithm for Multiuser MIMO Systems (다중 사용자 MIMO 시스템을 위한 Seysen 알고리즘 기반 Lattice Reduction Aided 프리코팅)

  • An, Hong-Sun;Mohaisen, Manar;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9C
    • /
    • pp.915-921
    • /
    • 2009
  • Lenstra-Lenstra-Lovasz (LLL) algorithm, which is one of the lattice reduction (LR) techniques, has been extensively used to obtain better bases of the channel matrix. In this paper, we jointly apply Seysen's lattice reduction Algorithm (SA), instead of LLL, with the conventional linear precoding algorithms. Since SA obtains more orthogonal lattice bases compared to those obtained by LLL, lattice reduction aided (LRA) precoding based on SA algorithm outperforms the LRA precoding with LLL. Simulation results demonstrate that a gain of 0.5dB at target BER of $10^{-5}$ is achieved when SA is used instead of LLL or the LR stage.

Low Complexity Zero-Forcing Beamforming for Distributed Massive MIMO Systems in Large Public Venues

  • Li, Haoming;Leung, Victor C.M.
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.370-382
    • /
    • 2013
  • Distributed massive MIMO systems, which have high bandwidth efficiency and can accommodate a tremendous amount of traffic using algorithms such as zero-forcing beam forming (ZFBF), may be deployed in large public venues with the antennas mounted under-floor. In this case the channel gain matrix H can be modeled as a multi-banded matrix, in which off-diagonal entries decay both exponentially due to heavy human penetration loss and polynomially due to free space propagation loss. To enable practical implementation of such systems, we present a multi-banded matrix inversion algorithm that substantially reduces the complexity of ZFBF by keeping the most significant entries in H and the precoding matrix W. We introduce a parameter p to control the sparsity of H and W and thus achieve the tradeoff between the computational complexity and the system throughput. The proposed algorithm includes dense and sparse precoding versions, providing quadratic and linear complexity, respectively, relative to the number of antennas. We present analysis and numerical evaluations to show that the signal-to-interference ratio (SIR) increases linearly with p in dense precoding. In sparse precoding, we demonstrate the necessity of using directional antennas by both analysis and simulations. When the directional antenna gain increases, the resulting SIR increment in sparse precoding increases linearly with p, while the SIR of dense precoding is much less sensitive to changes in p.

Path Metric Comparison-based Adaptive QRD-M Algorithm for MUHO Systems (Path Metric 비교 기반 적응형 QRD-M MIMO 검출 기법)

  • Kim, Bong-Seok;Kim, Han-Nah;Choi, Kwon-Hue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6C
    • /
    • pp.487-497
    • /
    • 2008
  • This paper proposes a new adaptive QRD-M algorithm for MIMO systems. The proposed scheme controls the number of survivor paths,0 based on the channel condition at each layer. The original QRD-M algorithm used fixed M at each layer and it needs large M to achieve near-MLD (maximum-likelihood detection) performance. However, using the large M increases the computation complexity. In this paper, we further effectively control M by employing the channel indicator which includes not only the channel gain, but also instantaneous noise information without necessity of SNR measurement. We found that the ratio of the minimum path metric to the second minimum is good reliability indicator for the channel condition. By adaptively changing M based on this ratio, the proposed scheme effectively achieves near MLD performance and computation complexity of the proposed scheme is significantly smaller than the conventional QRD-M algorithms.

Adaptive Coordinated Tx-Rx Beamforming for Multi-user MIMO Systems (다중 사용자 MIMO 시스템을 위한 적응적 Coordinated Tx-Rx 빔형성 기법)

  • An, Hong-Sun;Mohaisen, Manar;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.386-394
    • /
    • 2010
  • In this paper, we propose an adaptive coordinated Tx-Rx beamforming scheme for inter-user interference cancellation, when a BS communicates with multiple users that each has multiple receive antenna. The conventional coordinated Tx-Rx beamforming scheme uses a fixed multi-stream per user regardless of the instantaneous channel states, that is, both user with ill-conditioned and well-conditioned channels have the same number of data streams. However, in the proposed adaptive coordinated Tx-Rx beamforming scheme, we select the number of streams per user to solve the inefficient problem of the conventional coordinated Tx-Rx beamforming. As a result of applying the adaptive coordinated Tx-Rx beamforming scheme, the BER performance is improved. Simulation results show that the proposed algorithm outperforms the conventional coordinated Tx-Rx beamforming algorithm by 2.5dB at a target BER of $10^{-2}$.

Channel Prediction based Adaptive Channel Tracking cheme in MIMO-OFDM Systems with Null Sub-carriers (Null 부반송파를 갖는 MIMO-OFDM에서 채널 예측 기반적응 채널 추적 방식)

  • Jeon, Hyoung-Goo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.556-564
    • /
    • 2007
  • This paper proposes an efficient scheme to track a time variant channel induced by multi-path Rayleigh fading in mobile MIMO-OFDM systems with null sub-carriers. The proposed adaptive channel tracking scheme removes in the frequency domain the interfering signals of the other transmit (Tx) antennas by using a predicted channel frequency response before starting the channel estimation. Time domain channel estimation is then performed to reduce the additive white Gaussian noise (AWGN). The simulation results show that the proposed method is better than the conventional channel tracking method [3] in time varying channel environments. At a Doppler frequency of 300 Hz and bit error rates (BER) of 10-3, signal-to-noise power ratio (Eb/N0) gains of about 2.5 dB are achieved relative to the conventional channel tracking method [3]. At a Doppler frequency of 600 Hz, the performance difference between the proposed method and conventional one becomes much larger.

Low Complexity Iterative Detection and Decoding using an Adaptive Early Termination Scheme in MIMO system (다중 안테나 시스템에서 적응적 조기 종료를 이용한 낮은 복잡도 반복 검출 및 복호기)

  • Joung, Hyun-Sung;Choi, Kyung-Jun;Kim, Kyung-Jun;Kim, Kwang-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8C
    • /
    • pp.522-528
    • /
    • 2011
  • The iterative detection and decoding (IDD) has been shown to dramatically improve the bit error rate (BER) performance of the multiple-input multiple-output (MIMO) communication systems. However, these techniques require a high computational complexity since it is required to compute the soft decisions for each bit. In this paper, we show IDD comprised of sphere decoder with low-density parity check (LDPC) codes and present the tree search strategy, called a layer symbol search (LSS), to obtain soft decisions with a low computational complexity. In addition, an adaptive early termination is proposed to reduce the computational complexity during an iteration between an inner sphere decoder and an outer LDPC decoder. It is shown that the proposed approach can achieve the performance similar to an existing algorithm with 70% lower computational complexity compared to the conventional algorithms.