• Title/Summary/Keyword: C-MIMO

Search Result 130, Processing Time 0.026 seconds

Space Time Rake Receivers for Time Division Synchronous CDMA Base Stations

  • Xiao Yang;Lee Kwang-Jae;Lee Moon-Ho;Cho Sam-Goo
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.83-91
    • /
    • 2006
  • In this paper, we develop space-time(ST) Rake receivers for Time Division Synchronous Code Division Multiple Access(TD-SCDMA) base stations(BS). The beamforming of BS transforms the uplink MIMO channel space into many sub-sectors' channels to be nearly orthogonal, thus, well established 1-D Rake technology can be used to TD-SCDMA base station to construct ST Rake, which simplified the system's implementation as well as enlarged users' capacity by the beamforming. The construction and capacity of MIMO sub-sectors by multi-beamforming have been presented. The proposed ST Rake algorithm include the multi-beamforming algorithm for MIMO sub-sectors and classical 1-D Rake algorithm. The calculating formulas for interference plus noise ratio(SINR) and bit error rate(BER) have been derived. Simulations verify that the proposed ST Rake receiver for BS is effective, and the BS systems can get higher system capacity and can be of better performance than presented TD-SCDMA systems.

Turbo Coded MIMO System with Adaptive Turbo Space- Time Processing for High-Speed Wireless Communications (고속 무선 통신을 위한 적응형 터보 시공간 처리를 갖는 터보 부호화된 다중 입출력 시스템)

  • 조동균;김상준;박주남;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9C
    • /
    • pp.843-850
    • /
    • 2003
  • Turbo coding and turbo processing have been known as methods close to Shannon limit in the aspect of wireless MIMO communications similarly to wireless single antenna communication. The iterative processing can maximize the mutual effect of coding and interference cancellation, but turbo coding has not been used for turbo processing because of the inherent decoding process delay. This paper proposes a turbo coded MIMO system with adaptive turbo parallel space-time (Turbo-PAST) processing for high-speed wireless communications and a enhanced cyclic redundancy check (E-CRC) scheme as an efficient and simple priori stopping criterion. Simulation results show that the Turbo-PAST outperforms conventional system with 1.3dB and the proposed E-CRC scheme effectively reduces the amount of turbo processing iterations from the point of average number of iterations.

Optimal Pilot Sequence Design based on Chu sequences for Multi-cell Environments (다중 기지국 환경에서의 MIMO-OFDM 시스템을 위한 최적 파일럿 시퀀스 설계 방법)

  • Kang, Jae-Won;Rhee, Du-Ho;Byun, Il-Mu;Kim, Kwang-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1113-1121
    • /
    • 2009
  • In this paper, the channel estimation and pilot sequence design technique of multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems in multi-cell environments are studied for situations in which the inter cell interference (ICI) is the dominant channel impairment. We design pilot sequence aiming at minimizing mean square error and propose the channel estimation technique correspond to the designed pilot sequences. The proposed pilot sequences employ the sequences with good correlation properties such as Chu sequence and through simulations, it is shown that channel estimation algorithm using designed pilot sequence is effective for mitigating the ICI.

Coordinated Beamforming Systems with Channel Prediction in Time-varying MIMO Broadcast Channel (시변 다중입출력 방송 채널을 위한 채널예측이 적용된 협력 빔형성 시스템)

  • Kim, Jin;Kang, Jin-Whan;Kim, Sang-Hyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.302-308
    • /
    • 2011
  • In this paper we propose a coordinated beamforming(CBF) scheme considering the effects of feedback quantization and delay in time-varying multiple-input multiple-output(MIMO) broadcast channels. By equal power allocation per data stream, the proposed CBF scheme transmits multiple data streams per user terminals without additional feedback overhead when quantized feedback information is used. The proposed CBF scheme also applies a linear channel predictor to each user terminals to prevent errors due to feedback delays that are not evitable in practical wireless systems. Each user terminal utilizes Wiener filter to predict future channel responses and generates feedback information based on the predicted channels. Consequently the proposed CBF scheme adapting Wiener filter improves system performances compared with the conventional scheme using delayed feedback.

Energy-efficient Routing in MIMO-based Mobile Ad hoc Networks with Multiplexing and Diversity Gains

  • Shen, Hu;Lv, Shaohe;Wang, Xiaodong;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.700-713
    • /
    • 2015
  • It is critical to design energy-efficient routing protocols for battery-limited mobile ad hoc networks, especially in which the energy-consuming MIMO techniques are employed. However, there are several challenges in such a design: first, it is difficult to characterize the energy consumption of a MIMO-based link; second, without a careful design, the broadcasted RREP packets, which are used in most energy-efficient routing protocols, could flood over the networks, and the destination node cannot decide when to reply the communication request; third, due to node mobility and persistent channel degradation, the selected route paths would break down frequently and hence the protocol overhead is increased further. To address these issues, in this paper, a novel Greedy Energy-Efficient Routing (GEER) protocol is proposed: (a) a generalized energy consumption model for the MIMO-based link, considering the trade-off between multiplexing and diversity gains, is derived to minimize link energy consumption and obtain the optimal transmit model; (b) a simple greedy route discovery algorithm and a novel adaptive reply strategy are adopted to speed up path setup with a reduced establishment overhead; (c) a lightweight route maintenance mechanism is introduced to adaptively rebuild the broken links. Extensive simulation results show that, in comparison with the conventional solutions, the proposed GEER protocol can significantly reduce the energy consumption by up to 68.74%.

A Subcarrier-based Virtual Multiple Antenna Technique for OFDM Cellular Systems (OFDM 셀룰러 시스템에서 부반송파 기반의 가상 다중안테나 기법)

  • Lee, Kyu-In;Ko, Hyun-Soo;Woo, Kyung-Soo;Ko, Yo-Han;Kim, Yeong-Jun;Ahn, Jae-Young;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.981-990
    • /
    • 2006
  • In this paper, we introduce the concept of a subcarrier-based virtual multiple antennas (SV-MIMO) for OFDM cellular systems, where the multiple antenna techniques are performed on a set of subcarriers, not on the actual multiple antennas. The virtual multiple antenna system can support multiple users simultaneously as well as reduce inter-cell interference (ICI) form adjacent cells with a single antenna. Also, this technique is easily extended to multiple antenna environments. The virtual multiple antenna techniques can be divided into a virtual smart antenna technique and a virtual MIMO technique. Especially, this method effectively reduces ICI at cell boundary with frequency reuse factor equal to 1, and can support flexible resource allocation depending on the amount of interference. It is shown by simulation that the proposed method is superior to conventional method under the same condition of data transmission.

Low Complexity Lattice Reduction for MIMO Detection using Time Correlation of the Fading Channels (페이딩 채널의 시간 상관성을 이용한 Lattice Reduction 기반 MIMO 수신기 계산량 감소 기법)

  • Kim, Han-Nah;Choi, Kwon-Hue;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.523-529
    • /
    • 2010
  • We propose a very low complexity lattice reduction (LR) algorithm for MIMO detection in time varying channels. The proposed scheme reduces the complexity by performing LR in a block-wise manner. The proposed scheme takes advantage of the temporal correlation of the channel matrices in a block and its impact on the unimodular matrices during LR process. From this, the proposed scheme can skip a number of redundant LR processes for consecutive channel matrices and performs a single LR in a block. The simulation results investigated in this letter reveal that the proposed detection scheme requires only 43.4% multiplications and 17.3% divisions of LLL-LR and only 50.2% multiplications and 68.2% divisions of the conventional adaptive LR with almost no performance degradation.

A Computationally Efficient Signal Detection Method for Spatially Multiplexed MIMO Systems (공간다중화 MIMO 시스템을 위한 효율적 계산량의 신호검출 기법)

  • Im, Tae-Ho;Kim, Jae-Kwon;Yi, Joo-Hyun;Yun, Sang-Boh;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7C
    • /
    • pp.616-626
    • /
    • 2007
  • In spatially multiplexed MIMO systems that enable high data rate transmission over wireless communication channels, the spatial demultiplexing at the receiver is a challenging task, and various demultiplexing methods have been developed recently by many researchers. Among the previous methods, maximum likelihood detection with QR decomposition and M-algorithm (QRM-MM)), and sphere decoding (SD) schemes have been reported to achieve a (near) maximum likelihood (ML) performance. In this paper, we propose a novel signal detection method that achieves a near ML performance in a computationally efficient manner. The proposed method is demonstrated via a set of computer simulations that the proposed method achieves a near ML performance while requiring a complexity that is comparable to that of the conventional MMSE-OSIC. We also show that the log likelihood ratio (LLR) values for all bits are obtained without additional calculation but as byproduct in the proposed detection method, while in the previous QRM-MLD, SD, additional computation is necessary after the hard decision for LLR calculation.

An Efficient UEP Transmission Scheme for MIMO-OFDM Systems (MIMO-OFDM 시스템을 위한 효율적인 UEP 전송기법 제안)

  • Lee, Heun-Chul;Lee, Byeong-Si;Sundberg, Carl-Erik W.;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.469-477
    • /
    • 2007
  • Most multimedia source coders exhibit unequal bit error sensitivity. Efficient transmission system design should therefore incorporate the use of matching unequal error protection (UEP). In this paper, we present and evaluate a flexible space-time coding system with unequal error protection. Multiple transmit and receive antennas and bit-interleaved coded modulation techniques are used combined with rate compatible punctured convolutional codes. A near optimum iterative receiver is employed with a multiple-in multiple-out inverse mapper and a MAP decoder as component decoders. We illustrate how the UEP system gain can be achieved either as a power or bandwidth gain compared to the equal error protection system (EEP) for the identical source and equal overall quality for both the UEP and EEP systems. An example with two/three transmit and two receive antennas using BPSK modulation is given for the block fading channel.

Transmit Antenna Selection for Spatial Multiplexing with Per Antenna Rate Control and Successive Interference Cancellation (순차적인 간섭제거를 사용하는 공간 다중화 전송 MIMO 시스템의 전송 안테나 선택 방법에 관한 연구)

  • Mun Cheol;Jung Chang-Kyoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.560-569
    • /
    • 2005
  • This paper proposes an algorithm for transmit antenna selection in a multi-input multi-output(MIMO) spatial multiplexing system with per antenna rate control(PARC) and an ordered successive interference cancellation (OSIC) receiver. The active antenna subset is determined at the receiver and conveyed to the transmitter using feedback information on transmission rate per antenna. We propose a serial decision procedure consisting of a successive process that tests whether antenna selection gain exists when the antenna with the lowest pre-processing signal to interference and noise ratio(SINR) is discarded at each stage. Furthermore, we show that 'reverse detection ordering', whereby the signal with the lowest SINR is decoded at each stage of successive decoding, widens the disparities among fractions of the whole capacity allocated to each individual antenna and thus maximizes a gain of antenna selection. Numerical results show that the proposed reverse detection ordering based serial antenna selection approaches the closed-loop MIMO capacity and that it induces a negligible capacity loss compared with the heuristic selection strategy even with considerably reduced complexity.