• Title/Summary/Keyword: C-MAPSS Dataset

Search Result 4, Processing Time 0.017 seconds

Neural Network based Aircraft Engine Health Management using C-MAPSS Data (C-MAPSS 데이터를 이용한 항공기 엔진의 신경 회로망 기반 건전성관리)

  • Yun, Yuri;Kim, Seokgoo;Cho, Seong Hee;Choi, Joo-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.17-25
    • /
    • 2019
  • PHM (Prognostics and Health Management) of aircraft engines is applied to predict the remaining useful life before failure or the lifetime limit. There are two methods to establish a predictive model for this: The physics-based method and the data-driven method. The physics-based method is more accurate and requires less data, but its application is limited because there are few models available. In this study, the data-driven method is applied, in which a multi-layer perceptron based neural network algorithms is applied for the life prediction. The neural network is trained using the data sets virtually made by the C-MAPSS code developed by NASA. After training the model, it is applied to the test data sets, in which the confidence interval of the remaining useful life is predicted and validated by the actual value. The performance of proposed method is compared with previous studies, and the favorable accuracy is found.

A Proposal of Remaining Useful Life Prediction Model for Turbofan Engine based on k-Nearest Neighbor (k-NN을 활용한 터보팬 엔진의 잔여 유효 수명 예측 모델 제안)

  • Kim, Jung-Tae;Seo, Yang-Woo;Lee, Seung-Sang;Kim, So-Jung;Kim, Yong-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.611-620
    • /
    • 2021
  • The maintenance industry is mainly progressing based on condition-based maintenance after corrective maintenance and preventive maintenance. In condition-based maintenance, maintenance is performed at the optimum time based on the condition of equipment. In order to find the optimal maintenance point, it is important to accurately understand the condition of the equipment, especially the remaining useful life. Thus, using simulation data (C-MAPSS), a prediction model is proposed to predict the remaining useful life of a turbofan engine. For the modeling process, a C-MAPSS dataset was preprocessed, transformed, and predicted. Data pre-processing was performed through piecewise RUL, moving average filters, and standardization. The remaining useful life was predicted using principal component analysis and the k-NN method. In order to derive the optimal performance, the number of principal components and the number of neighbor data for the k-NN method were determined through 5-fold cross validation. The validity of the prediction results was analyzed through a scoring function while considering the usefulness of prior prediction and the incompatibility of post prediction. In addition, the usefulness of the RUL prediction model was proven through comparison with the prediction performance of other neural network-based algorithms.

Prediction Remaining Useful Life of Aircraft Turbofans Using Transfer Learning Based CNN-LSTM (전이학습 기반 CNN-LSTM을 통한 항공기 터보팬 잔여 유효 수명 예측)

  • Kim Jeong Min;Kang Hyeon Woo;Cho Young Ki;Kwon Gi Hyuk;An Seo Yeon;Kim Hun Kee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.12
    • /
    • pp.700-709
    • /
    • 2024
  • The objective of research in the field of prognostics and health management is to predict the Remaining Useful Life of aircraft engines, a critical component of analysis within this domain. Nevertheless, there are difficulties in acquiring dependable failure information, and the limited availability of defect data hinders the development of predictive models. Current data augmentation techniques are utilized to enhance the insufficient defect data; however, the heuristic approaches might oversimplify the data characteristics, ultimately decreasing predictive accuracy. This study suggests a hybrid model that combines Transfer Learning, specifically integrating Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM). The hybrid CNN-LSTM model integrates the CNN's feature extraction capabilities with the LSTM's long-term time series learning capacity, facilitating the representation of intricate dynamic characteristics and temporal fluctuations in aircraft engine sensor data. The performance of predictive techniques is enhanced by applying data learned from various source domains to target domain data through transfer learning. The results obtained by applying this model to the C-MAPSS aircraft engine simulator dataset developed by the National Aeronautics and Space Administration (NASA) corroborate the idea that employing a pre-trained model through transfer learning improves predictive accuracy in comparison to the standard mixed model. Furthermore, the proposed model demonstrates improved predictive abilities when compared to various leading predictive models in the PHM field.

Remaining Useful Life Estimation based on Noise Injection and a Kalman Filter Ensemble of modified Bagging Predictors

  • Hung-Cuong Trinh;Van-Huy Pham;Anh H. Vo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3242-3265
    • /
    • 2023
  • Ensuring reliability of a machinery system involve the prediction of remaining useful life (RUL). In most RUL prediction approaches, noise is always considered for removal. Nevertheless, noise could be properly utilized to enhance the prediction capabilities. In this paper, we proposed a novel RUL prediction approach based on noise injection and a Kalman filter ensemble of modified bagging predictors. Firstly, we proposed a new method to insert Gaussian noises into both observation and feature spaces of an original training dataset, named GN-DAFC. Secondly, we developed a modified bagging method based on Kalman filter averaging, named KBAG. Then, we developed a new ensemble method which is a Kalman filter ensemble of KBAGs, named DKBAG. Finally, we proposed a novel RUL prediction approach GN-DAFC-DKBAG in which the optimal noise-injected training dataset was determined by a GN-DAFC-based searching strategy and then inputted to a DKBAG model. Our approach is validated on the NASA C-MAPSS dataset of aero-engines. Experimental results show that our approach achieves significantly better performance than a traditional Kalman filter ensemble of single learning models (KESLM) and the original DKBAG approaches. We also found that the optimal noise-injected data could improve the prediction performance of both KESLM and DKBAG. We further compare our approach with two advanced ensemble approaches, and the results indicate that the former also has better performance than the latters. Thus, our approach of combining optimal noise injection and DKBAG provides an effective solution for RUL estimation of machinery systems.