• Title/Summary/Keyword: C-5 pathway

Search Result 780, Processing Time 0.033 seconds

Effects of Cheonghyul-san on Blood Glucose, Hyperlipidemia, Polyol Pathway and Reactive Oxygen Species in ob/ob Mice (청혈산(淸血散)이 ob/ob mouse의 혈당, 고지혈증, Polyol Pathway 및 Reactive Oxygen Species에 미치는 영향)

  • Park, Sang-Tae;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.350-356
    • /
    • 2008
  • Etiological studies of diabetes and its complications showed that oxidative stress might play a major role. Therefore, many efforts have been tried to regulate free oxygen radicals for treating diabetes and its complications. Cheonghyul-san has been known to be effective for the antidiabetic, antihyperlipidemic and antiobesitic prescription, and composed of four crude herbs. In male ob/ob mouse with severe obesity, hyperinsulinemia, hypergiycemia, hyperlipidemia, the acting mechanisms of Cheonghyul-san were examined. Mice were grouped and treated for 5 weeks as follows. Both the lean (C57/BL6J black mice) and diabetic (ob/ob mice) control groups received standard chow. The experimental groups were fed with a diet of chow supplemented with 7.5, 15 and 30 mg Cheonghyul-san per 1 kg of body weight for 14 days. The effects of Cheonghyul-san extract on the ob/ob mice were observed by measuring the serum levels of glucose, insulin, lipid components, and the kidney levels of reactive oxygen species (ROS), MDA+HAE, GSH and also the enzyme activities involved in polyol pathway. Cheonghyul-san lowered the levels of serum glucose and insulin in a dose dependent manner. Total cholesterol, triglyceride and free fatty acid levels were decreased, while the HDL-cholesterol level was increased, in Cheonghyul-san treated groups. Renal aldose reductase and sorbitol dehydrogenase activities were increased in the ob/ob mice, whereas those were inhibited in the Cheonghyul-san-administered groups. Cheonghyul-san inhibited the generation of ROS in the kidney. Finally, MDA+HAE level was increased and the GSH level was decreased in the ob/ob mice, whereas those were improved in the Cheonghyul-san-administered groups. The results suggested that Cheonghyul-san exerted the antidiabetic and antihyperlipidemic activities by regulating the activities of polyol pathway enzymes, scavenging ROS, regulating the MDA+HAE and GSH levels in the ob/ob mice.

Inhibition of the Calcineurin Pathway by Two Flavonoids Isolated from Miliusa sinensis Finet & Gagnep.

  • Lee, Won Jeong;Moon, Jae Sun;Kim, Young Tae;Bach, Tran The;Hai, Do Van;Kim, Sung Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1696-1700
    • /
    • 2016
  • In order to discover plant-derived signaling pathway inhibitors with antifungal properties, a two-component screening system utilizing the calcineurin and Hog1 mitogen-activated protein kinase pathways responsible for the virulence networks of Cryptococcus neoformans was employed, owing to the counter-regulatory actions of these pathways. Of the 1,000 plant extracts tested, two bioactive compounds from Miliusa sinensis were found to act specifically on the calcineurin pathway of C. neoformans. These compounds, identified as pashanone and 5-hydroxy-6,7-dimethoxyflavanone, exhibited potent antifungal activities against various human pathogenic fungi with minimum inhibitory concentration values ranging from 4.0 to >128 μg/ml.

Effect of Gene Amplifications in Porphyrin Pathway on Heme Biosynthesis in a Recombinant Escherichia coli

  • Lee, Min Ju;Kim, Hye-Jung;Lee, Joo-Young;Kwon, An Sung;Jun, Soo Youn;Kang, Sang Hyeon;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.668-673
    • /
    • 2013
  • A recombinant E. coli co-expressing ALA synthase (hemA), NADP-dependent malic enzyme (maeB), and dicarboxylic acid transporter (dctA) was reported to synthesize porphyrin derivatives including iron-containing heme. To enhance the synthesis of bacterial heme, five genes of the porphyrin biosynthetic pathway [pantothenate kinase (coaA), ALA dehydratase (hemB), 1-hydroxymethylbilane synthase (hemC), uroporphyrinogen III synthase (hemD), and uroporphyrinogen III decarboxylase (hemE)] were amplified in the recombinant E. coli co-expressing hemA-maeB-dctA. Pantothenate kinase expression enabled the recombinant E. coli to accumulate intracellular CoA. Intracellular ALA was the most enhanced by uroporphyrinogen III synthase expression, porphobilinogen was the most enhanced by ALA dehydratase expression, uroporphyrin and coproporphyrin were the most enhanced by 1-hydroxymethylbilane synthase expression. The strain co-expressing coaA, hemA, maeB, and dctA produced heme of $0.49{\mu}mol/g$-DCW, which was twice as much from the strain without coaA expression. Further pathway gene amplifications for the porphyrin derivatives are discussed based on the results.

Vibrational Relaxation and Bond Dissociation in Methylpyrazine on Collision with N2 and O2

  • Young-Jin Yu;Sang Kwon Lee;Jongbaik Ree
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.407-414
    • /
    • 2023
  • The present study uses quasi-classical trajectory procedures to examine the vibrational relaxation and dissociation of the methyl and ring C-H bonds in excited methylpyrazine (MP) during collision with either N2 or O2. The energy-loss (-ΔE) of the excited MP is calculated as the total vibrational energy (ET) of MP is increased in the range of 5,000 to 40,000cm-1. The results indicate that the collision-induced vibrational relaxation of MP is not large, increasing gradually with increasing ET between 5,000 and 30,000 cm-1, but then decreasing with the further increase in ET. In both N2 and O2 collisions, the vibrational relaxation of MP occurs mainly via the vibration-to-translation (V→T) and vibration-to-vibration (V→V) energy transfer pathways, while the vibration-to-rotation (V→R) energy transfer pathway is negligible. In both collision systems, the V→T transfer shows a similar pattern and amount of energy loss in the ET range of 5,000 to 40,000cm-1, whereas the pattern and amount of energy transfer via the V→V pathway differs significantly between two collision systems. The collision-induced dissociation of the C-Hmethyl or C-Hring bond occurs when highly excited MP (65,000-72,000 cm-1) interacts with the ground-state N2 or O2. Here, the dissociation probability is low (10-4-10-1), but increases exponentially with increasing vibrational excitation. This can be interpreted as the intermolecular interaction below ET = 71,000 cm-1. By contrast, the bond dissociation above ET = 71,000 cm-1 is due to the intramolecular energy flow between the excited C-H bonds. The probability of C-Hmethyl dissociation is higher than that of C-Hring dissociation.

Apoptotic Signaling Cascade of 5-aminolaevulinic Acid-based Photodynamic Therapy in Human Promyelocytic Leukemia HL-60 Cells

  • Nagao, Tomokazu;Matsuzaki, Kazuki;Takahashi, Miho;Minamitani, Haruyuki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.509-511
    • /
    • 2002
  • In this study, we investigated apoptotic cell death induced by photodynamic therapy using 5-aminolaevulinic acid (ALA-PDT) in human promyelocytic leukemia cells (HL-60). ALA-PDT induced apoptosis in HL-60 cells as confirmed by DNA agarose gel electrophoresis and nuclear staining with Hoechst 33342. The apoptotic cell death was inhibited by addition of broad-spectrum caspase inhibitor Z-Asp-CH$_2$-DCB, indicating that the apoptotic cell death was induced in a caspase-dependent manner. Actually, western blotting analysis revealed that caspase-3 was processed as early as 1.5 h after ALA-PDT. Cytoplasmic cytochrome c released from mitochondria was detected by western blotting. However, inhibitor of caspase-9, a cysteine protease located in the downstream of cytochrome c release, was not able to reduce the apoptotic cell death. Therefore, the mitochondrial apoptotic pathway was not involved in the ALA-PDT-induced apoptosis. On the other hand, it was found that ALA-PDT-induced apoptosis was clearly inhibited by pretreatment of caspase-8 inhibitor. These data suggest that caspase-8-mediated apoptotic pathway is important in ALA-PDT-induced cell death.

  • PDF

In Vitro Anticomplementary Activity of Hederagenin Saponins Isolated from Roots of Dipsacus asper

  • Oh, Sei-Ryang;Jung, Keun-Young;Son, Kun-Ho;Park, Si-Hyung;Lee, Im-Seon;Ahn, Yung-Seop;Lee, Hyeong-Kyu
    • Archives of Pharmacal Research
    • /
    • v.22 no.3
    • /
    • pp.317-319
    • /
    • 1999
  • Anticomplementary activity of hederagenin and related saponins isolated from Dipsacus asper was investigated in vitro. HN saponin F (3) was most potent with $IC_{50}$ value of$ 3.7{\times}10^{-5} M$ followed by 3-O-${\beta}-D-glucopyranosyl-(1{\rightarrow} 3)-{\alpha}-L-rhamnopyranosyl-(1{\rightarrow}2)-{\beta}-L-arabinopyranosyl$ hederagenin $28-O-{\beta}-D-glucopyranosyl-(1{\rightarrow}6)-beta$-D-glucopyrano side (8), $3-O-{\beta}-L-arabinopyranosyl$ hederagenin $28-O-{\beta}-D-glucopyranosyl-(1{\rightarrow}6)-{\beta}-D-glucopyranoside$ (5), dipsacus saponin A (4), and hederagenin (1) on the classical pathway (CP) of complement system, while the saponins 3-5 did not show the inhibition of hemolysis and rather increase the hemolysis on the alternative pathway (AP). However, all of C-3 monodesmosides [prosapogenin CP (2), dipsacus saponin B (6), and dipsacus saponin C (7)] evoked hemolysis directly on the erythrocytes.

  • PDF

Serotonin (5-HT) Receptor Subtypes Mediate Regulation of Neuromodulin Secretion in Rat Hypothalamic Neurons

  • Chin, Chur;Kim, Seong-Il
    • Genomics & Informatics
    • /
    • v.5 no.2
    • /
    • pp.77-82
    • /
    • 2007
  • Serotonin (5-HT), the endogenous nonselective 5-HT receptor agonist, activates the inositol-1,4,5-triphosphate/calcium $(InsP3/Ca^{2+})$ signaling pathway and exerts both stimulatory and inhibitory actions on cAMP production and neuromodulin secretion in rat hypothalamic neurons. Specific mRNA transcripts for 5-HT1A, 5-HT2C and 5-HT4 were identified in rat hypothalamic neurons. These experiments were supported by combined techniques such as cAMP and a $Ca^{2+}$ assays in order to elucidate the associated receptors and signaling pathways. The cAMP production and neuromodulin release were profoundly inhibited during the activation of the Gi-coupled 5-HT1A receptor. Treatment with a selective agonist to activate the Gq-coupled 5-HT2C receptor stimulated InsP3 production and caused $Ca^{2+}$ release from the sarcoplasmic reticulum. Selective activation of the Gs-coupled 5-HT4 receptor also stimulated cAMP production, and caused an increase in neuromodulin secretion. These findings demonstrate the ability of 5-HT receptor subtypes expressed in neurons to induce neuromodulin production. This leads to the activation of single or multiple G-proteins which regulate the $InsP3/Ca^{2+}/PLC-{\gamma}$ and adenyl cyclase / cAMP signaling pathways.

cAMP/PKA Agonist Restores the Fasting-Induced Down-Regulation of nNOS Expression in the Paraventricular Nucleus

  • Yoo, Sang-Bae;Lee, Seoul;Lee, Joo-Young;Kim, Bom-Taeck;Lee, Jong-Ho;Jahng, Jeong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.333-337
    • /
    • 2012
  • Gene expression of neuronal nitric oxide synthase (nNOS) changes in the hypothalamic paraventricular nucleus (PVN) depending on feeding conditions, which is decreased during food deprivation and restored by refeeding, and phosphorylated cAMP response element binding protein (pCREB) was suggested to play a role in its regulation. This study was conducted to examine if the fasting-induced down-regulation of the PVN-nNOS expression is restored by activation of cAMP-dependent protein kinase A (cAMP/PKA) pathway. Freely moving rats received intracerebroventricular (icv) injection of cAMP/PKA activator Sp-cAMP (40 nmol) or vehicle (sterilized saline) following 48 h of food deprivation. One hour after drug injections, rats were transcardially perfused with 4% paraformaldehyde, and the PVN tissues were processed for nNOS or pCREB immunohistochemistry. Sp-cAMP significantly increased not only nNOS but also pCREB immunoreactivities in the PVN of food deprived rats. Fastinginduced down-regulation of the PVN-nNOS was restored by 1 h after the icv Sp-cAMP. Results suggest that cAMP/PKA pathway may mediate the regulation of the PVN-nNOS expression depending on different feeding conditions.

Activation of Akt/PKB at Serine 473 by N-acetylphytosphingosine (NAPS) and $C_{2}-ceramide$ Reduces Melanin Synthesis in B16F10 Mouse Melanoma Cells

  • Yi, Seh-Yoon;Han, Seon-Kyu;Park, Mee-Kyung;Yoo, Young-Sook
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.81-88
    • /
    • 2006
  • Sphingolipid metabolites regulate many aspects of cell proliferation, differentiation, and apoptosis. In the present study, we have assessed the effects of the novel phytosphingosine derivative, N-acetylphytospingosine (NAPS), on the depigmentation of murine B16F10 melanoma cells, and have also attempted to identify the possible signaling pathway involved, in comparison with $C_{2}-ceramide$. NAPS and $C_{2}-ceramide$ both inhibited the growth of the B16F10 cells in a dose-dependent manner. Melanin content and tyrosinase activity were significantly reduced in response to treatment with NAPS and $C_{2}-ceramide$ at concentrations in a range between $1-5\;{\mu}M$. However, the levels of tyrosinase mRNA, as well as the levels of tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2) genes and the level of tyrosinase protein remained unaffected by treatment with either NAPS or $C_{2}-ceramide$. We also attempted to determine the signaling pathway exploited by NAPS and $C_{2}-ceramide$. Interestingly, the phosphorylation of Akt/PKB at serine 473 by NAPS was reduced at the 5 minute mark, whereas $C_{2}-ceramide$ induced the phosphorylation of Akt/PKB at serine 473. Finally, Akt/PKB activity in the NAPS-treated cells was elevated in comparison with the untreated cells. LY294002, a specific PI3-K inhibitor which is located upstream of Akt/PKB, inhibited the phosphorylation of Akt/PKB, but induced an increase in melanin synthesis. These results suggest that the activation of Akt/PKB at serine 473 is related with the suppression of melanin production in the B16F10 mouse melanoma cells. Therefore, the mechanisms exploited by NAPS and $C_{2}-ceramide$ responsible for the depigmentation of B16F10 cells were concluded to involve the inhibition of melanosomal tyrosinase activity.

Conversion of C2C12 Myoblast into Adipoblast with Thiazolidinediones - A Possible Basis for Intramuscular Fat Generation in Meat Animals

  • Singh, N.K.;Chae, H.S.;Hwang, I.H.;Yoo, Y.M.;Ahn, C.N.;Lee, H.J.;Park, H.J.;Chung, H.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.432-439
    • /
    • 2007
  • Thiazolidinediones (TZDs) act as potent activators of the adipose differentiation program in established preadipose cell lines. TZD's have also been investigated in diabetic patients and reported to act as PPAR-${\gamma}$ ligands. In this report, the effects of TZDs on the differentiation pathway of myoblasts have been investigated. C2C12 mouse myoblasts were grown in Dulbecco's Modified Eagles medium for 4-5 days until they reached almost 100% confluency. Post-confluent cells (day 0) were further exposed to adipogenic induction medium along with TZDs for 48 hours. Thereafter, cells were exposed only to TZDs every 48 h until day 10. The control was provided with differentiation medium without any treatment. Alterations in the cells during the differentiation programme were analyzed on the basis of fusion index, oil-red-o staining, adipocyte index, adipocyte stain uptake measurement, immuno-histochemistry and western blotting. Exposure of C2C12 mouse myoblasts to TZDs prevented the expression of myosin heavy chain with parallel increase in the expression of C/EBP-${\alpha}$ and PPAR-${\gamma}$ and acquisition of adipocyte morphology, thus abolishing the formation of multinucleated myotubes. TZDs exert their adipogenic effects only in non-terminally differentiated myoblasts; myotubes were insensitive to the compound. Continuous exposure (at least 4-5 doses) to inducers after the growth arrest was essential to provide a sustained environment to the cells converting to fully matured adipoctyes. The results indicate that TZDs specifically converted the differentiation pathway of myoblasts into that of adipoblasts.