• Title/Summary/Keyword: C=C double bond

Search Result 153, Processing Time 0.029 seconds

Double Layer (Wet/CVD $SiO_2$)의 Interface Trap Density에 대한 연구

  • Lee, Gyeong-Su;Choe, Seong-Ho;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.340-340
    • /
    • 2012
  • 최근 MOS 소자들이 게이트 산화막을 Mono-layer가 아닌 Multi-Layer을 사용하는 추세이다. Bulk와 High-k물질간의 Dangling Bond를 줄이기 위해 Passivation 층을 만드는 것을 예로 들 수 있다. 이러한 Double Layer의 쓰임이 많아지면서 계면에서의 Interface State Density의 영향도 커지게 되면서 이를 측정하는 방법에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 $SiO_2$ Double Layer의 Interface State Density를 Conductance Method를 사용하여 구하는 연구를 진행하였다. Wet Oxidation과 Chemical Vapor Deposition (CVD) 공정을 이용하여 $SiO_2$ Double-layer로 증착한 후 Aluminium을 전극으로 하는 MOS-Cap 구조를 만들었다. 마지막 공정은 $450^{\circ}C$에서 30분 동안 Forming-Gas Annealing (FGA) 공정을 진행하였다. LCR meter를 이용하여 high frequency C-V를 측정한 후 North Carolina State University California Virtual Campus (NCSU CVC) 프로그램을 이용하여 Flatband Voltage를 구한 후에 Conductance Method를 측정하여 Dit를 측정하였다. 본 연구 결과 Double layer (Wet/CVD $SiO_2$)에 대해서 Conductance Method를 방법을 이용하여 Dit를 측정하는 것이 유효하다는 것을 확인 할 수 있었다. 본 실험은 앞으로 많이 쓰이고 측정될 Double layer (Wet/CVD $SiO_2$)에 대한 Interface State Density의 측정과 분석에 대한 방향을 제시하는데 도움이 될 것이라 판단된다.

  • PDF

Concomitant Addition and Acetalization of α,β-Unsaturated Aldehydes with Diols

  • Jeon, Kyu-Ok;Yu, Ji-Sook;Lee, Chang-Kiu
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1653-1656
    • /
    • 2004
  • ${\alpha},{\beta}$-Unsaturated aldehydes such as acrolein and crotonaldehyde were reacted with diols in the presence of conc. sulfuric acid to give products of which concomitant addition to C-C double bond and acetalization took place. Boron trifluoride etherate and titanium tetrachloride gave only acetalization products.

Effect of Low Temperature upon the Fatty Acid Composition Plasma Membrane of Canola (저온 환경이 Canola 원형질막의 Fatty Acid 구성에 미치는 영향)

  • Kwon, Sung-Hwan;Plank, D.W.;Jeon, Hee;Kim, Jae-Chul
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.136-143
    • /
    • 1995
  • Using a PEG- dextran two phase partition method, plasma and intracellular membrane separated from microsomal membrane of canola (Brassica napus) leaves have been fractionated by centrifugation. $K^{+}$- ATPase specific activity in the plasma membrane (U$_2$ phase) of plants grown at $25^{\circ}C$ and 1$0^{\circ}C$ were 6.6 and 4.6 times, respectively that of the microsomal membrane. Plasma membrane had a lower cytochrome- c- oxidase specific activity than the microsomal membrane or intracellular membrane, while intracellular membrane (L$_2$ phase) had a high cytochrome-c- oxidase but little $K^{+}$- ATPase specific activity. The plasma membrane of canola grown at 1$0^{\circ}C$ had higher 18:3 to 18:2 (linolenic to linoleic acid) ratio (29.2% ) and higher degree of unsaturation than that grown at $25^{\circ}C$ The double bond index of plasma membrane from canola grown at 1$0^{\circ}C$ increased by 8.9% relative to canola grown at $25^{\circ}C$. Similar, intracellular membrane increased by 19.7% at 1$0^{\circ}C$. Canola grown at 1$0^{\circ}C$ was lower in chlorophyll contents (17.3%) than that grown at $25^{\circ}C$. These changes in fatty acid unsaturation were attributable largely to change in Cl8 fatty acid, with major changes occurring in linolenic acid (18 :3) which might have a physiological role of membrane to adaptation on low temperature.ure.

  • PDF

A Direct Comparison Study of Asymmetric Borane Reduction of C=N Double Bond Mediated by Chiral Oxazaborolidines

  • Cho Byung Tae;Ryu, Mi Hae;Chun Yu Sung;Dauelsberg Ch.;Wallbaum Sabine;Martens Jurgen
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.53-57
    • /
    • 1994
  • A comparison study on asymmetric borane reduction of ketoxime ethers and N-substituted ketimines possesing C = N double bond mediated by the selected chiral oxazaborolidines (1-6) was investigated. Thus, an aromatic ketoxime O-alkyl ether acetophenone oxime O-methyl ether was reduced to the corresponding amine (1-phenylethylamine 8a) with optical yields, such as 58% ee with 1, 86% ee with 2, 3% ee with 3, 99% ee with 4, 60% ee with 5, and 73% ee with 6. However, the reduction of an aliphatic ketoxime derivative 2-heptanone oxime O-methyl ether provided low optical inductions (7-13% ee). For ketoxime O-trimethylsilyl ethers, the reduction of acetophenone O-trimethylsilyl ether afforded 8a with optical yields which were 90% ee with 1, 40% ee with 2, 2% ee with 3, 62% ee with 4, 5% ee with 5, and 60% ee with 6. The reduction of 2-heptanone O-trimethylsilyl ether also gave the product amine with low optical yields (10-40% ee). In the case of N-substituted ketimines, the reduction of acetophenone N-phenylimine afforded the corresponding amine with 79% ee, 78% ee, 9% ee, 73% ee, 78% ee and 67% ee using 1, 2, 3, 4, 5, and 6, respectively, whereas low optical inductions (5-18% ee) for 2-heptanone N-phenylimine were achieved.

Theoretical Studies on the Photo-Skinsensitizing Psoralens (II)

  • Kim, Ja-Hong;Shim, Sang-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.3
    • /
    • pp.112-114
    • /
    • 1981
  • The photocycloaddition reaction of 8-methoxypsoralen with purine and/or pyrimidine bases is studied as a model for the charge transfer interactions of psoralens with DNA bases by the FMO method. The results indicate that, in the case of the molecular complex formation between psoralens and purine and/or pyrimidine bases, the most probable photocycloaddition should occur in the following order: Thy (5,6)<>(3,4) 8-MOP, Cyt(5,6)<>(3,4)8-MOP, Ade (7,8)<>(3,4)8-MOP, Gua(7,8)<>(3,4)8-MOP. The theoretical results for the photocycloaddition reaction are also correlated with the experimental results. The photoadducts between 8-methoxypsoralen and adenine are likely to be C4-cycloadducts through the cycloaddition of 3,4-pyrone double bond of 8-methoxypsoralen to 7,8-double bond of adenine.

Theoretical Studies on the Photocycloaddition Reaction of Psoralen with Thymidine

  • Kim, Ja-Hong;Oh, Se-Woung;Lee, Yoon-Sup;Shim, Sang-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.298-300
    • /
    • 1987
  • The theoretical studies on the photocycloaddition reaction of 5,7-dimethoxycoumarin and 4',5'-dihydropsoralen with thymidine were carried out as a model for photosensitizing reaction of psoralen with DNA. The results are in reasonable agreement with experimental observations. The photoadducts between dimethoxycoumarin and thymidine were predicted to be $C_{4}$-cycloadducts through the cycloaddition of 3,4-pyrone double bond of dimethoxycoumarin to 5,6 double bond of thymidine. The major photoadduct of 4',5'-dihydropsoralen with thymidine has the anti head-to-head stereochemistry.

PHOTOISOMERIZATION STUDIES OF SUBSTITUTED DIPHENYLBUTADIENES: ROLE OF POLARIZED EXCITED STATES IN THE PHOTOPROCESSES OF $\alpha,\omega$-DIPHENYLPOLYENES

  • Singh, A.K.;Krishna, T.S.R.
    • Journal of Photoscience
    • /
    • v.5 no.2
    • /
    • pp.47-51
    • /
    • 1998
  • Direct irradiation of 1Z,3E-1-cyano-1,4-diphenylbutadiene (2) and 1Z,3E-1-cyano-3-methyl-1,4-diphenylbutadiene (3) in organic solvents viz. n-hexane, methanol and acetonitrile results in preferential isomerization of the double bond substituted with cyano group via one-photon-one-bond isomerization process. The quantum efficiency of the isomerization of 3 is more than 2 in all the three solvents. Photoproducts of 2 and 3 (viz. 2a, 2b, 3a, 3b) also exhibited similar photoisomerization trends. The results are discussed in terms of the effects of substituents on the potential energy surface of the excited singlet states of $\alpha$,$\omega$-diphenylpolyenes, and the role of zwitterionic dipolar species in the photoisomerization process of linearly conjugated C=C polyenes is highlighted.

  • PDF

Study on Reactive Non-thermal Plasma Process combined with Metal Oxide Catalyst for Removal of Dilute Trichloroethylene

  • Han Sang-Bo;Oda Tetsuji;Park Jae-Youn;Park Sang-Hyun;Koh Hee-Seok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.292-300
    • /
    • 2006
  • In order to improve energy efficiency in the dilute trichloroethylene removal using the nonthermal plasma process, the barrier discharge treatment combined with manganese dioxide was experimentally studied. Reaction kinetics in this process was studied on the basis of final byproducts distribution. Decomposition efficiency was improved to about $99\;\%$ at the specific energy of 40 J/L with passing through manganese dioxide. C=C ${\pi}$ bond cleavage of TCE substances gave DCAC, which has the single bond of C-C through oxidation reaction during the barrier discharge plasma treatment. Those DCAC were broken easily in the subsequent catalytic reaction due to the weak bonding energy about $3{\sim}4\;eV$ compared with the double bonding energy in TCE molecules. Oxidation byproducts of DCAC and TCAA from TCE decomposition are generated from the barrier discharge plasma treatment and catalytic surface chemical reaction, respectively. Complete oxidation of TCE into COx is required to about 400 J/L, but $CO_2$ selectivity remains about $60\;\%$.

A Study on the Electrical-Fire Analysis and Firing Characteristics of Power Cord by Thermal Stress (열적 피로에 의한 전원코드의 발화 특성과 전기화재 분석에 관한 연구)

  • 최충석;송길목;김향곤;김동욱;김동우
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2003.04a
    • /
    • pp.164-170
    • /
    • 2003
  • In this paper, we studied on the firing characteristics and electrical fire analysis of power cord deteriorated by thermal stress. The cross section of PVC insulating cord deteriorated by indirect flame decreased through heat convection. PVC insulating cord deteriorated by direct flame was bumpy shape. The exothermic peak of normal cord was shown at ($526.7^{\circ}C$), but the peaks or on(heat treatment temperature) ($150^{\circ}C$) cord was shown at ($299.6^{\circ}C$) and [$502.2^{\circ}C$]. The exothermic peaks according to high temperature were similar to those of amorphous carbon. In the FT-IR analysis, the absorption peak of normal cord indicated double bond of oxygen and carbon in benzene ring at 1720.0$cm^{1}$. As the HTT was high, the height of characteristic peak decreased and the peak of carbonyl group was shown at about 1625.7$cm^{-1}$. The characteristic peak of single bond(O-H) was shown at about 3479.2$cm^{-1}$. In case of the internal part of wire covering deteriorated by over current, the characteristic peak were shown at about 3417.3$cm^{-1}$ and 1600.2$cm^{-1}$. The above results show that we can distinguish the differences according to the fire pattern through the internalㆍexternal analysis of wire covering deteriorated by heat.

  • PDF

Reaction Kinetics and Dependence of Energy Efficiency in the Dilute Trichloroethylene Removal by Non-thermal Plasma Process combined with Manganese Dioxide

  • Han, Sang-Bo;Oda, Tetsuji;Park, Jae-Youn;Koh, Hee-Seok;Park, Sang-Hyun;Lee, Hyun-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.552-553
    • /
    • 2005
  • In order to improve energy efficiency in the dilute trichloroethylene removal using the nonthermal plasma process, the barrier discharge treatment combined with manganese dioxide was experimentally studied. Reaction kinetics in this process was studied on the basis of final byproducts distribution. Decomposition efficiency was improved to about 99% at the specific energy 40J/L with passing through manganese dioxide. C=C $\pi$ bond cleavage in TCE gave DCAC (single bond, C-C) through oxidation reaction during the barrier discharge plasma treatment. Those DCAC were broken easily in the subsequent catalytic reaction due to the weak bonding energy about 3 ~ 4 eV compared with the double bonding energy in TCE molecules. Oxidation byproducts of DCAC and TCAA from TCE decomposition are generated from the barrier discharge plasma treatment and catalytic surface chemical reaction, respectively. Complete oxidation of TCE into $CO_X$ is required to about 400J/L.

  • PDF