• Title/Summary/Keyword: C/S-rate

Search Result 6,283, Processing Time 0.036 seconds

An Experimental Study on the Flow Characteristics of Mortar use Quenched Blast-Furnace Slag (수재사 모릍의 Flow특성에 관한 연구)

  • Yang, Beom-Seok;Lim, Nam-Gi;Lee, Young-Do;Lee, Jong-Kyun;Chung, Lan;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.215-222
    • /
    • 1997
  • Flow experimental on not to be solid mortar which use Quenched Blast-furnace Slag as a fine aggregate was carried out for basic research data about fundamental study of application possibility of Quenched Blast-furnace Slag as a fine aggregate. It gives following result. The substitution rate is inversely proportional to Flow and C/S-rate same that. The relation with W/C-rate augment appear proportional : in case of C/S-rate, 1:3 increasing degree is a half of sand mortar that. Consequencely, Quenched Blast-furnace Slag motar is a counteraction to Flow in as same water content per unit. But suitable substitution rate and C/S-rate influence a little to the mortar consistency. And that reason, if C/S-rate and substitution rate will be regulated when we mix the mortar with quenched Blast-furnace Slag. that will be economic mixture.

  • PDF

Effect of Gypsum on the Characteristics of Early Hydration of the System C3S-C3A (I) (C3S-C3A계의 초기 수화반응 특성에 미치는 석고의 영향 (I))

  • 신규연;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.514-520
    • /
    • 1989
  • The early hydration characteristics according to the C3S/C3A ratio and presence of gypsum, in order to establish the hydration mechanism of the system C3S-C3A, have been studied. The rate of C3S dissolution in the system C3S-Gypsum was higher than that in the system C3S. Consequently, the induction period was reduced and the rate of Ca(OH)2 formation in the accleration period was increased. The hydration of C3S in the system C3S-C3A was retarded because Al3+ in the liquid phase originating from the hydration of C3A was incorporated into calcium hydrosilicates formed. The retardation phenomenon of C3S hydration was not appeared in the system C3S-C3A-gypsum because the reaction of monosulfate formation became the rate-determining step.

  • PDF

Feeding the Larvae of the Sea Urchin Strongylocentrotus intermedius on a Red-Tide Dinoflagellate Cochlodinium polykrikoides

  • Lee, Chang-Hoon
    • Journal of Aquaculture
    • /
    • v.15 no.2
    • /
    • pp.79-86
    • /
    • 2002
  • This study is the first attempt to understand the feeding physiology of a sea-urchin larva on a red-tide dinoflagellate. Fifteen day old larvae of S. intermedius capture C. polykrikoides cells by localized reversal of ciliary beats. No failure to transporte the algal cells from theciliated band to mouth and no rejection at the mouth suggest that C. polykrikoides has no feeding deterrence to S. intermedius larvae. The trend obtained for the clearance rate of S. intermedius larvae is similar to that of other sea urchin larvae. Thus, the clearance rate decreased as the algal concentration increased. Maximum clearance rate of S. intermedius on C. polykrikoides was 17.7 $\mu l$/larva/hr. Ingestion rate rapidly increased at lower algal concentrations and saturated at higher concentrations. There was no inhibition in ingestion rate at the highest prey concentration of ca. 3000 cells/ml. Maximum ingestion rate of S. intermedius on C. polykrikoides was 131 ngC/larva/d, which is higher than that reported for the larvae of the mussel Mytilus gal-lotrovincialis, but lower than that of the ciliate Strombidinopsis sp. The grazing rate, calculated by combining the field data on algal abundances with experimental data on ingestion rate, suggests that due to its low abundance, sea urchin Iarva has no significant grazing impact on C. polykrikoides population.

Synthesis of Silicon Carbide Whiskers (I) : Reaction Mechanism and Rate-Controlling Reaction (탄화규소 휘스커의 합성(I) : 반응기구의 율속반응)

  • 최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1336-1336
    • /
    • 1998
  • A twt -step carbothermal reduction scheme has been employed for the synthesis of SiC whiskers in an Ar or a H2 atmosphere via vapor-solid two-stage and vapor-liquid-solid growth mechanism respectively. It has been shown that the whisker growth proceed through the following reaction mechanism in an Ar at-mosphere : SiO2(S)+C(s)-SiO(v)+CO(v) SiO(v)3CO(v)=SiC(s)whisker+2CO2(v) 2C(s)+2CO2(v)=4CO(v) the third reaction appears to be the rate-controlling reaction since the overall reaction rates are dominated by the carbon which is participated in this reaction. The whisker growth proceeded through the following reaction mechaism in a H2 atmosphere : SiO2(s)+C(s)=SiO(v)+CO(v) 2C(s)+4H2(v)=2CH4(v) SiO(v)+2CH4(v)=SiC(s)whisker+CO(v)+4H2(v) The first reaction appears to be the rate-controlling reaction since the overall reaction rates are enhanced byincreasing the SiO vapor generation rate.

Effects of the Cooling Rate After Annealing Treatment on the Microstructure and the Mechanical Properties of Super-Duplex Stainless Steel (슈퍼 듀플렉스 스테인레스강의 미세조직 및 기계적 특성에 미치는 열처리 후 냉각속도의 영향)

  • Kwon, Gi-Hyoun;Na, Young-Sang;Yoo, Wee-Do;Lee, Jong-Hoon;Park, Yong-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.735-743
    • /
    • 2012
  • The aim of this study was to analyze the effect of the cooling rate after heat treatment on the microstructure and mechanical properties of 2507 duplex stainless steels. Heat treatment was carried out at $1050^{\circ}C$ for 1 hr, followed by controlled cooling. The cooling rates were $175.6{\times}10^{-3}^{\circ}C/s$, $47.8{\times}10^{-3}^{\circ}C/s$, $33.3{\times}10^{-3}^{\circ}C/s$, $16.7{\times}10^{-3}^{\circ}C/s$, $11.7{\times}10^{-3}^{\circ}C/s$, $5.8{\times}10^{-3}^{\circ}C/s$ and $2.8{\times}10^{-3}^{\circ}C/s$, which resulted in variations of the microstructure, such as the fractional change of the ferrite phase and sigma phase formation. Fatigue, hardness, impact and tensile tests were performed on the specimens with different cooling rates. The precipitation of the ${\sigma}$ phase caused a hardness increase and a sharp decrease of toughness and tensile elongation. The fatigue limit of the sample with a cooling rate of $5.8{\times}10^{-3}^{\circ}C/s$ was 26 MPa higher than that of the sample with a cooling rate of $175.6{\times}10^{-3}^{\circ}C/s$. Our observations of the fracture surface confirmed that the higher fatigue resistance of the specimen with a cooling rate of $5.8{\times}10^{-3}^{\circ}C/s$ was caused by the delay of the fatigue crack growth, in addition to higher yield strength.

Hydrolysis of Phosphate Diesters as Nucleic Acid Model (핵산 모델로서 Phosphate Diester들의 가수분해 반응)

  • Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.37 no.6
    • /
    • pp.447-450
    • /
    • 1994
  • Rate of hydrolysis ethylene phosphate, dimethylphosphate and hydroxyethylmethylphosphate in neutral water have been measured. Hydrolysis of ethylene phosphate proceeds with P-0 bond cleavage $(k_{obs}=3{\times}10^{-7}s^{-1}\;at\;100^{\circ}C,\;{\Delta}H{\neq}=24\;kcal,\;{\Delta}S{\neq}=25.5\;eu)$. In constrast, hydrolysis of dimethylphosphate proceeds with C-O bond cleavage $(k_{obs}=3{\times}10^{-7}s^{-1}\;at\;150^{\circ}C)$. The rate constant for P-O bond cleavage of dimethylphosphate is estimated at $1{\times}10^{-11}s^{-1}\;at\;150^{\circ}C,\;({\Delta}H{\neq}=36\;kcal,\;{\Delta}S{\neq}=25.5\;eu)$. A phosphodiesterase catalyzed hydrolysis of dimethylphosphate is $10^{17}$ times faster than the simple water rate. The observed rate of hydrolysis of hydroxyethylmethylphosphate is comparable to that of dimethylphosphate indicating C-O bond cleavage $(k_{obs}=6{\times}10^{-7}s^{-1}\;at\;150^{\circ}C)$.

  • PDF

Synthesis of Silicon Carbide Whiskers (I) : Reaction Mechanism and Rate-Controlling Reaction (탄화규소 휘스커의 합성(I) : 반응기구의 율속반응)

  • 최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1329-1336
    • /
    • 1998
  • A twt -step carbothermal reduction scheme has been employed for the synthesis of SiC whiskers in an Ar or a H2 atmosphere via vapor-solid two-stage and vapor-liquid-solid growth mechanism respectively. It has been shown that the whisker growth proceed through the following reaction mechanism in an Ar at-mosphere : SiO2(S)+C(s)-SiO(v)+CO(v) SiO(v)3CO(v)=SiC(s)whisker+2CO2(v) 2C(s)+2CO2(v)=4CO(v) the third reaction appears to be the rate-controlling reaction since the overall reaction rates are dominated by the carbon which is participated in this reaction. The whisker growth proceeded through the following reaction mechaism in a H2 atmosphere : SiO2(s)+C(s)=SiO(v)+CO(v) 2C(s)+4H2(v)=2CH4(v) SiO(v)+2CH4(v)=SiC(s)whisker+CO(v)+4H2(v) The first reaction appears to be the rate-controlling reaction since the overall reaction rates are enhanced byincreasing the SiO vapor generation rate.

  • PDF

Analysis on the Effects of the Heat Loss Coefficient on the Operation Time of Sprinkler in Compartment Fire (구획 화재에서 스프링클러 열 손실계수 변화에 따른 작동 시간 분석)

  • You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.32 no.5
    • /
    • pp.34-39
    • /
    • 2018
  • In this study, the experiment conditions for the variation of heat release rate in compartment space were constructed to analyze the effects of fire spread and the operation time of sprinkler in accordance with the heat loss of the sprinkler's heat element. The compartment composed of fire board (width = 0.3 m, height = 0.5 m, length = 3.0 m), are manufactured to measure the temperature distributions in the inner space, the mass loss rate and heat release rate during the experiment of N-heptane pool fire test. Also, the operation time of sprinkler is analyzed with the installation of sprinkler and C-factor using Fire Dynamics Simulator Ver.6 under the experiment conditions. The results show that the operation time of sprinkler, which has RTI $100(m{\cdot}s)^{0.5}$ operating temperature $70^{\circ}C$, is 30 s~60 s for C-factor = 0 and 1, 62 s~92 s for C-factor = 3, and 120 s over for C-factor = 5, respectively.

The Early Hydration Characteristics of the System $C_3S-C_3A-C_4AF$(I) : Effect of Clinker Composition Variations ($C_3S-C_3A-C_4AF$계의 초기수화특성(I) : 클링커 조성변동의 영향)

  • 신규연;한기성
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.1055-1063
    • /
    • 1990
  • The early hydration characteristics of the system $C_3S-C_3A-C_4AF$ according to the clinker composition variations, in order to establish the mutual interactionof clinker minerals during the portland cement hydration, have been studied. The early hydration rate of $C_3S$ was greatly effected by the change of $C_3S/C_3A$ ratio. The lower the $C_3S/C_3A$ ratio was, the faster the apex reaching time and the rate of heat liberation of the 2nd exothermic peak originating from the formation of $Ca(OH)_2$ were. The effect of $C_3S/C_3A$ ration on the amounts of $Ca(OH)_2$ formation was decreased, in process of hydration time, but the effect of $C_3S$ content was increased.

  • PDF

The Solvolysis of Benzoyl Chloride in Water-Acetone Mixtures Under High Pressure

  • Jee, Jong-Gi;Ree, Taik-Yue
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.1
    • /
    • pp.31-39
    • /
    • 1987
  • By using a complete rate constant($k_e$) which treats a solvent (water) as a reactant, and a conventional rate constant($k_c$), which ignores the solvent in describing the rate, the parameters ${\Delta}V^{\neq}_s,\;{\Delta}H^{\neq}_s\;and\;{\Delta}S^{\neq}_s$ were introduced. These quantities represent the volume change, the enthalpy change, and the entropy change accompanying the electrostriction which occurs when solvent molecules condense on the activated complex. The authors measured the rates of the solvolysis of benzoyl chloride in water-acetone mixtures at $15^{\circ}$ to $30^{\circ}C$ and 1 bar to 2500 bars. Applying the authors' theory to the experimental results, the parameters, ${\Delta}V^{\neq}_s,\;{\Delta}H^{\neq}_s\;and\;{\Delta}S^{\neq}_s$ were evaluated, and it was found that they are all negative, indicating that water dipoles condense on the activated complex. They also proposed the following equations: ${\Delta}H^{\neq}_c\;=\;{\Delta}H^{\neq}_e\;+\;{\Delta}H^{\neq}_s\;and\; {\Delta}S^{\neq}_c\;=\;{\Delta}S^{\neq}_e\;+{\Delta}S^{\neq}_s\;,\;where\;{\Delta}H^{\neq}_c\;and\;{\Delta}H^{\neq}_c\;and\;{\Delta}S^{\neq}_s $are the activation enthalpy change and the activation entropy change for the conventional reaction rate, respectively, and ${\Delta}H^{\neq}_e$ and ${\Delta}S^{\neq}_e$ are the corresponding quantities for the complete reaction rate. The authors proposed that for the $SN_1$ type, all the quantities, ${\Delta}V^{\neq}_s,\;{\Delta}S^{\neq}_s\;,{\Delta}H^{\neq}_s\;and\;{\Delta}S^{\neq}_s$ are comparatively large, and for the $SN_2$ type, these quantities are smaller than for the $SN_1$ type, and occasionally the case ${\Delta}S^{\neq}_e$ < 0 occurs. Using these criteria, the authors concluded that at high temperature, high pressure and for a high water content solvent, the SN_1$ type mechanism predominates whereas in the reversed case the $SN_2$M type predominates.