• Title/Summary/Keyword: C/N비

Search Result 148, Processing Time 0.031 seconds

Characteristics of Compost Produced from the Composting Facility at Nanjido (난지도 퇴비화시범시설에서 생산되는 퇴비의 품질특성)

  • Namkoong, Wan;Kim, Joung-Dae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.5 no.2
    • /
    • pp.57-64
    • /
    • 1997
  • This study was performed to investigate the characteristics of compost produced from the composting facility at Nanjido. The capacity of the facility is 10 ton/day. Feed material was food waste generated in Seoul. Moisture content of the compost product was 31% and conductivity was 2.6 mmhos/cm. The compost product met Korean quality standards and EC quality standards for VS and C/N ratio. In case of TOC and TKN, they were met with Japan quality standards. The water soluble-C/N ratio finally reached about 5 based on dry compost. The color of compost product was dark brown. The product had earthy smell. Heavy metal contents of the compost were below Korean quality standards by wet basis.

  • PDF

Effect of Salinity Concentration on Aerobic Composting of Food Waste (염분함량이 음식물쓰레기의 호기성 퇴비화에 미치는 영향)

  • Kim, Nam-Chan;Kim, Do-Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.124-129
    • /
    • 2000
  • The purpose of this study is to estimate the degradation rate and process efficiency of the composting according to the salinity concentration. The samples of food waste for this study were collected in Pocheon-Gun, Kyungki-Do. The collected samples were adjusted to the optimum range of moisture content, pH and C/N ratio. After that, adding the saline, the samples with 3 different salinity concentrations(1%, 5% and 10%) were made. Then each sample was fed into the reactor with temperature controller. During the aerobic composting process, the change of the physical and chemical properties of the sample as temperature, pH, C/N ratio and $CO_2$ and $O_2$ concentration in the reactor were measured. From the experiment of this study, the result are following. The highest temperatures are $59^{\circ}C$ at RUN 1(1% salinity conc.), $49^{\circ}C$ at RUN 2(5% salinity conc.) and $45^{\circ}C$ at RUN 3(10% salinity conc.). The change of $CO_2$ production and $O_2$ consumption have the positive correlation with the change of the temperature. $CO_2$ production and $O_2$ consumption are peaked at the low salinity concentration. During composting, Run 1, RUN 2 and RUN 3 are increased pH to 8.9, 8.6 and 7.2 and slowly decreased C/N ratio to 18.9, 19.1 and 22.1 and moisture content to 51.1%, 53.7% and 55.0%, respectively. It is supposed that increasing salinity concentration causes the retarding of the microbial degradation activities during the composting. And for the efficient composting, the salinity concentration in the sample hat to be maintained below 5%.

  • PDF

Effect of Influent C/N Ratio and DO on Denitrification of Nitrate Polluted Groundwater in a Biofilter Process (Biofilter 공정에서 유입 C/N비와 DO가 지하수의 질산성 질소제거에 미치는 영향)

  • Lee, Moo-Jae;Park, Sang-Min;Park, Noh-Back;Jun, Hang-Bae;Kim, Kong-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.355-361
    • /
    • 2006
  • In this study, effects of influent C/N(COD/Nitrate) ratio and dissolved oxygen(DO) concentration on biological nitrate removal from groundwater were investigated in the fixed-type biofilter. Influent nitrate of 30 mg/L was removed completely by biological denitrification at the C/N ratio of 10 and 4.0, while residual nitrate of 5 mg/L occurred at the C/N ratio of 2.0, which resulted from deficiency of organic electron donor. Furthermore, nitrite was accumulated up to about 5 mg/L as the C/N ratio decreased to 2.0. Increase in DO concentration also inhibited denitrification activity at the relatively high C/N ratio of 5.0, which decreased the nitrate removal efficiency. Although the influent DO concentration was reduced as low as 0.3 mg/L using sodium sulfite($Na_2SO_3$), effluent nitrite was up to 3.6 mg/L. On the other hand, nitrate was completely removed without detection of nitrite at the DO concentration of 0.3 mg/L using nitrogen gas($N_2$) sparging. The organic matter for denitrification in biofilter were in the range from 3.0 to $3.5gSCOD/g{NO_3}^--N$, while utilized these values increased at the high DO concentration of 5.5 mg/L. In addition to the high DO concentration and the low influent C/N ratio, DO control by chemical such as sodium sulfite affected on biological denitrification, which resulted in the reduction of nitrate removal efficiency and nitrite build-up in a biofilter.

Optimum Mixing Ratio of Bulking Agent for Garbage Composting (음식쓰레기 퇴비화시 bulking agent의 적정 첨가량 결정에 관한 연구)

  • Shin, Hang-Sik;Hwang, Eung-Ju;Jeong, Yeon-Koo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.1
    • /
    • pp.75-86
    • /
    • 1994
  • Garbage composting was studied in a controlled batch reactor with the addition of cooked rice as a biodegradable carbon source to find the effect of C/N ratio control on composting. And composting of bulking agents such as sawdust and wheat straw were tested with the addition of ammonium sulfate as a nitrogen source. As expected, biodegradation of the garbage having low C/N ratio was improved to some extent when foreign carbon was added. But bulking agents used in this study exerted slightly biodegradable carbon potential, indicating that the estimation of the dose of additional carbon considering desirable C/N ratio was not reasonable when lignocellulosic bulking material was added to garbage. It was found that the optimum moisture content increased with sawdust addition meaning the C/N ratio increment. Considering the above results, it was suggested that 78g sawdust per 100g garbage should be mixed to make C/N ratio to 25 and moisture content to 56% for effective composting of the garbage studied in this paper.

  • PDF

Optimal Design and Process Parameters of Biological Nutrent Removal Processes using Activated Sludge Model No.2d (ASM No. 2d를 이용한 생물학적 질소, 인 제거 공정의 최적 설계 및 운전인자 고찰)

  • Ahn, Ho-Chul;Park, Myung-Gyun;Yoo, Hee-Chan;Kim, Dae-Sung;Ahn, Won-Sik;Heo, Yong-Rok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1400-1404
    • /
    • 2006
  • 생물학적 질소, 인 제거 공정(이하 BNR)의 운전에 있어서 최적 유입수의 C/N(COD/TKN)비, SRT 및 온도의 범위 및 정량적 수치 등은 유기물 뿐 만아니라 질소, 인의 처리 효율에 있어서 매우 중요하다. 특히, 외국과 다른 저농도 유기물 특성을 보이는 국내 하수에 대해서는 BNR 공정의 선택과 설계 및 운전인자의 선별이 무엇보다도 중요한 역할을 한다. 본 연구에서는 IAWQ에서 제시한 ASM No.2d를 기초로 하여 만들어진 전산모형인 Envirosim사의 Biowin 프로그램을 시뮬레이션 도구로 활용하여, 국내 하수에 비교적 적용하기 용이한 A2/O 공정과 MUCT 공정에 대한 유기물, 질소 및 인처리 효율을 비교하고 유입수의 C/N와 SRT 및 온도에 따른 질소, 인 처리 특성과 유출수의 거동 등을 파악하였다. 시뮬레이션 결과, 국내 하수에서는 A2/O 보다는 MUCT 공정이 질소, 인 처리효율이 더 크게 나타났다. 온도와 SRT가 일정한 상태에서 C/N비는 7이상에서 TKN과 TP제거효율이 양호하게 나타났고, 온도와 C/N비를 일정한 조건에서는 SRT가 7일을 넘어서면 효율이 급격히 낮아지는 현상을 관찰할 수 있었다. 온도조건 실험에서는 $20^{\circ}C$이하, 특히 국내 하수처리장에 BNR 적용시 설게조건인 $13^{\circ}C$에 근접해서는 TKN의 제거효율은 급격히 떨어지는 반면에 인 제거효율이 상승하는 것으로 나타났다.

  • PDF

The Chemical Properties and Fertilizer Effect of a Residual By-product of Glutamic Acid Fermentation (구르타민 산발효잔사가공물(酸醱酵殘渣加工物)의 성질(性質)과 비효 -II. 토양(土壤)의 이화학적성질(理化學的性質) 개량효과)

  • Hong, Chong Woon;Jung, Yee Geun;Park, Chon Suh;Kim, Yung Sup
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.4
    • /
    • pp.227-230
    • /
    • 1973
  • To elucidate the effect of the organic carbon compounds included in a separate from glutamic acid fermentation residue (G. A. F. R) on the improvement of the physico-chemical properties of soil, on a soil low in organic matter content, treated with G. A. F. R and compost, observations on the total organic matter, humic acid, fulvic acid, C. E. C. and the development of aggregates were made. From the results of the investigations it was concluded that, the organic carbon compound in the tested G. A. R. F. is more effective than compost in increasing the total organic matter, humic acid, fulvic acid and C. E. C. of soil and in enhancing the development of soil aggregates.

  • PDF

The Effect of Sewer Pipe Retrofit on The Operation of Sewage Treatment Plant in Rural Area (농촌 지역의 하수관거 정비사업이 하수처리장 운영에 미치는 영향)

  • Kim, Seongjung;Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.147-151
    • /
    • 2019
  • Recently, rural areas are rapidly developing, while existing infrastructure is inadequate and aging compared to developing rural areas. The most representative of these is the sewer system. Therefore, in this study, the rural area of Gyeonggi A city was selected as the study area and analyzed the effect of the sewer maintenance business on the operation of the sewage treatment plant. The analysis items were pollutant treatment efficiencies, the changes of inflow sewage amount, sewage concentration, influnet load, and C / N ratio by comparing before and after the development. As a result of the analysis, the sewage amount increased significantly after the development, and the sewage concentration increased after the development and the load of the sewage in the wastewater treatment plant also increased after the development. And improvement and management of inflow of unidentified water such as infiltration water and influent water in the sewage pipe was improved due to improvement of sewage pipe, which is considered to have affected the increase of C / N ratio and the improvement of TN and TP removal efficiency. The results of this study can be used as a representative example of the sewerage maintenance project in the rural area that positively influenced the operation of the sewage.

Optimization of Biopolymer Production from Alkali-Tolerant Bacillus sp. (알칼리 내성 Bacillus sp.의 생물고분자 생산조건의 최적화)

  • Lee, Shin-Young;Lee, Beom-Su;Lee, Keun-Eok
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.167-174
    • /
    • 1991
  • Cultural conditions for the biopolymer production by an alkali tolerant Bacillus sp. isolated from soil were investigated and determination of optimal conditions was carried out by response surface method. The maximal production of biopolymer was obtained after cultivation at $30^{\circ}C$ for 36hrs in the mixture of 8% soluble starch, 0.75% yeast extract, 0.1% $NaNO_3$, 0.05% $MgSO_4\;7H_2O$ and 1% $Na_2CO_3$ adjusted to pH 10. Under these conditions, about 44 g/l of biopolymer were produced. From the results of response surface analysis, optimal condition for the production of biopolymer were obtained at stationary point with 15.16 of C/N ratio, $34.62^{\circ}C$ of temperature and 9.50 of pH. On the basis of these conditions, it was estimated that 66.84 g/l of the biopolymer could be produced.

  • PDF

무산소-호기공정을 이용한 순환식 생물여과반응기에서 동시 질산화 및 탈질화의 특성 연구

  • Lee, Su-Cheol;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.343-346
    • /
    • 2000
  • This study was carried out to investigate the effects of influent $NH_4^{\;+}-N$ load, C/N ratio and superficial air velocity on the nitrogen removal efficiencies. Laboratory scale upflow biological aerated filter(BAF) was consisted of an anoxic-aerobic filter packed with porous ceramic media and operated with synthetic wastewater. BAFs requires less energy and space for the system when compared to conventional activated sludge process. The influent C/N ratios were varied from 0 to 1 by adjusting acetate. Various superficial air velocity had been applied to investigate aeration effect on nitrogen removal. The BAF reactor showed more than 90% average $NH_4^{\;+}-N$ removal efficiencies at $NH_4^{\;+}-N$ loading in the range of $0.26{\sim}1.33$ kg $NH_4^{\;+}-N/m^3{\cdot}d$ and 62% average T-N removal efficiencies at the C/N ratio of 1. Moreover, average T-N removal efficiencies increased as the superficial air velocity increased, because of the increase $NH_4^{\;+}-N$ removal efficiencies.

  • PDF