• Title/Summary/Keyword: C/Glass Composites

Search Result 252, Processing Time 0.018 seconds

Synthesis and Their Properties of (0.8PPV+0.2DMPPV)/Silica Glass, Borosilicate Glass Composites by Sol-Gel Process (Sol-Gel법을 이용한 (0.8PPV+0.2DMPPV)/Silica Glass, Borosilicate Glass 복합체의 합성과 그 특성)

  • 이병우;김병호;윤영권;한원택
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.993-1001
    • /
    • 1997
  • The (0.8PPV+0.2DMPPV) copolymer and silica/borosilicate composites were synthesized by sol-gel process. The organic-inorganic hybrid solution was prepared by using of (0.8PPV+0.2DMPPV) copolymer precursor solution as a raw material for organic components and TEOS and TMB for glass components. Then by drying the solution in vacuum at 5$0^{\circ}C$ for 7days and subsequent heat treatment in vacuum at 15$0^{\circ}C$~30$0^{\circ}C$ for 2h~72h with heating rate of 0.2$^{\circ}C$/min and 1.8$^{\circ}C$/min, the organic-inorganic composites were synthesized. Microstructural evolution of the composites was characterized by DSC, IR spectrocopy, UV/VIS spectroscopy, and TEM. Elimination of the polymer precursor and degradation of the polymer were observed by DSC and Si-O and trans C=C absorption peaks were identified by IR spectra. The polymer was found to be successfully incorporated into the glass matrix and it was confirmed by the absorption peaks from the polymer in the UV/VIS spectra and the TEM results. The absorption peak of the composites was found to shift toward short wavelength side compared to that of the pure polymer and the amount of the blue shift increased with increasing the heat treatment temperature and heat treatment time and with decreasing the heating rate.

  • PDF

Study on the durability of fiber reinforced plastic by moisture aborsoption (흡수에 의한 FRP의 내구성에 관한 연구)

  • 문창권;구자삼
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.48-56
    • /
    • 1997
  • This work has been investigated in order to study the influence of the moisture absorption on the mechanical pf the glass fiber/epoxy resein composites and the carbon fiber/epoxy resein composites. The types of glass fiber used in the glass fiber/epoxy resein composites were randomly oriented fiber and plain fabric fiber. And carbon fiber.epoxy resein composites was laminated with fabric prepreg which was formed with carbon fiber and epoxy resein. Both composites were immersed up to 100 days in distilled water at $80^{\circ}C$, and then dried up to 3 days in an oven at 80$80^{\circ}C$. Both composites were measured for the weight gain of water(wt.%) and tensile strength through immersion and dry time. Consequently, it was found that the tensile strength of thw glass fiber/epoxy resein composites and the carbon fiber/epoxy resein composites were reduced proportionally to the moisture absortion rate. Also, the tensile strength of glass fiber composites was decreased more than that of the carbon fiber composites. Additionally, it was found that the tensile strength of all composites which decreased by moisture absorption were partly recovered by drying in an oven at 80$80^{\circ}C$.

  • PDF

Effect of softening point of glass frit on the sintering behavior of low-temperature cofitrable glass/ceramic composites (유리 프릿트의 연화점이 저온소성용 글라스/세라믹 복합체의 소결거동에 미치는 영향)

  • 구기덕;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.619-625
    • /
    • 1998
  • The effect of softening point and glass amount of glass frit on the sintering behavior of low temperature cofirable glass/ceramic composites was studied and according to these results, glass/ceramic composites with high sintered density was fabricated. The density of composites was increased as the glass amount was increased. In case of using the glass with low softening point, the deformation of specimen was occurred though the ratio of the glass amount in the specimen was low. But, in case of using the glass with high softening point, the sintered density of composites was increased in accordance with glass amount. With the specimen of high softening point, the deformation was not happened. Therefore, it was found that the densification was progressed continuously in high glass amount. From the study on the effect of softening point of glass on sintering behavior, the suitable softening point and glass amount for fabrication of glass/ceramic composites can be anticipated. When glass frit with softening point of $790^{\circ}C$ was chosen according to this result, low temperature cofirable glass/ceramic composites with high density (97%) at $900^{\circ}C$ was fabricated.

  • PDF

Sintering and Microstructure of Alumina/Mica and Spinel/Mica Composites

  • Suzuki, Sofia-Saori;Taruta, Seiichi;Takusagawa, Nobuo
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.363-367
    • /
    • 1998
  • Alumina/mica and spinel/mica composites were fabricated by sintering of compacts containing 20 mass% fluoromica ($KMg_3AlSi_3O-{10}F_2$) glass and alumina or spinel. In both composites, mica precipitated as plate-like crystals at temperatures lower than $1300^{\circ}C$ and melted at $1300^{\circ}C$ to $1400^{\circ}C$. In alumina/mica composites, alumina and glass reacted to produce spinel, and the densification progressed by the solution-precipitation of alumina. Consequently, the glass composition changed and the mica did not precipitate at temperatures higher than $1400^{\circ}C$. However, mica precipitated after a reheating process. In spinel/mica composites, the glass composition did not change. After the mica phase melted, it recrystallized during slow cooling. The relative density reached the maximum at $1500^{\circ}C$ for alumina/mica and at $1300^{\circ}C$ spinel/mica composites, and decreased at further high temperatures.

  • PDF

Effects of Glass Particle Size on Sintering Behaviors of the Glass-Alumina Composites for Low Firing Temperature (저온 소성용 유리-알루미나 복합체에서 유리 입자크기에 따른 소결거동)

  • 박덕훈;김봉철;김정주;박이순
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.545-551
    • /
    • 2000
  • Sintering behaviors of the glass-alumina composites for low firing temperature were investigated as a function of the particle size of glass frit. The system of glass frit was Pb-B-Si-Al-O. The median particle sizes of the glass frits were 2.72$\mu\textrm{m}$, 2.67$\mu\textrm{m}$ and 1.33$\mu\textrm{m}$, which were prepared with changing ball-milling times as 24 h, 48 h and 96 h. The glass-alumina composites showed maximum density at certain temperature, and further heating led to dedensification behaviors, so called over-firing. The sintering temperature, which showed maximum density, raised from 425$^{\circ}C$ to 475$^{\circ}C$ with increase of particle size of glass frit from 1.33$\mu\textrm{m}$ to 2.72$\mu\textrm{m}$. Especially, the over firing behaviors, which were occurred at high sintering temperatures, were greatly increased with decrease of particle size of glass frit.

  • PDF

A Resistance Property Against High Velocity Impact on Glass-SiC Composites (유리-탄화규소 복합재료의 고속충돌 저항물성)

  • Kim, Chang-Wook;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.653-659
    • /
    • 2006
  • The glass-SiC composites have been manufactured via viscous flow of glass for investigating their sinterability and various properties. The relative density of 99.6% could be achieved when 5 wt% SiC was mixed with glass powder, glass-rearranged at 460$^{\circ}C$ for 3 h and then sintered at 665$^{\circ}C$ for 1 h. The sintered density was decreased as adding more than 5 wt% SiC to glass powder. The resistance properties against hyper velocity copper jet formed by explosion of K215 warhead were compared with other ceramics such as $Al_2O_3$ and pyrex, resulting in lower values than that of $Al_2O_3$.

Hydrolysis Resistance and Mechanical Property Changes of Glass Fiber Filled Polyketone Composites Upon Glass Fiber Concentration

  • Kim, Sung Min;Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Hydrolysis resistance and mechanical property changes of polyketone (POK)/glass fiber (GF) composites were investigated for GF concentrations varying between 30 and 50%. The hydrolysis resistance of GF filled POK and polyamide66 (PA66, hydrolysis resistant grade) composites were compared. As shown by the experimental results, increasing the immersion time of the composites in a monoethylene glycol (MEG)/water solution at $120^{\circ}C$ had no impact or resulted in slightly decreased mechanical properties such as the tensile strength, tensile modulus, and strain at break in case of POK composites, whereas the mechanical properties of PA66 composites showed a significant drop. Increasing GF concentrations increased the tensile strength, tensile modulus, flexural strength, and flexural modulus of POK composites; however, impact strength did not show significant changes. Hydrolysis mechanisms of POK and PA66 are discussed.

Effect of calcination temperature on mechanical properties of spinel-glass dental composites (하소온도에 따른 인공치관용 스피넬-유리 복합체의 기계적 특성)

  • 이득용;이준강;김대준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.5
    • /
    • pp.234-239
    • /
    • 2002
  • The spinel was calcined at temperatures in the range of $1000^{\circ}C$ to $1300^{\circ}C$ with $100^{\circ}C$ interval to evaluate the effect of calcination temperature on mechanical properties of spinel-glass dental composites. Although the average particle size of spinel calcined at temperatures from $1000^{\circ}C$ to $1200^{\circ}C$ was within 2.8~3.0 $\mu\textrm{m}$, the spinel calcined at $1300^{\circ}C$ was 4.66 $\mu\textrm{m}$ due to abnormal grain growth. Shrinkage and pore size of the spinel preform decreased and increased, respectively, as calcination temperature increased, indicating that the calcination temperature was significant to the powder compaction and the densification of the composites as a result of particle size and distribution. The optimum strength and the fracture toughness of the composite calcined at $1200^{\circ}C$ were 284$\pm$40 MPa, 2.5$\pm$0.1 MPaㆍ$m^{1/2}$ respectively. Optical experimental results showed that transmittance of the spinel-glass composite in the visible region was twice higher than that of the alumina-glass composite, suggesting that the spinel-glass composites possessed better aesthetic properties for all-ceramic dental crown application.

Low dielectric mullite/glass composite (저 유전성 Mullite/Glass 복합체에 관한 연구)

  • 백용혁;김주영;강선명
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.606-611
    • /
    • 1999
  • Low dielectric Mullite/Glass composites for substrates were fabricated by mullite by synthesized from kaolin and alumina, and borosilicate glass. By the liquid-sintering, the composites were densified at low sintering temperature in air, allowing confiring with Cu, Ag, Au and Ag-Pd. Crystallization of the borosilicate glass was not occurred. The mullite/50 wt% glass composites fired between 950 and $1100^{\circ}C$ showed good properties for high-performed substrate, such as low dielectric constant (5.2~5.4, at 1MHz), low coefficient of thermal expansion (5.3~$5.7{\times}10^{-6}{\cdot}^0C^{-1}$), and bending strength of 130 MPa.

  • PDF

Mechanical Properties of Alumina-Glass Dental Composites Prepared from Aqueous-Based Tape Casting (수계공정에 의한 알루미나 테이프로 제조한 세라믹 인공치관용 알루미나 유리 복합체의 기계적 물성)

  • 이명현;김대준;이득용;이정훈;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1123-1131
    • /
    • 1999
  • Alumina-glass composites which are considered as the material of the choice for all dental crown was prepared by aqeous-based tape casting and sintering for 2h at 1120$^{\circ}C$ followed by glass infiltration for 2h at 1100$^{\circ}C$ Biaxial strength and fracture toughness of the composites were evaluated to determine the optimum composition of the tape as a function of the amount of constituent such as alumina binder and plasticizer. The strength and the fracture toughness of the alumina tape increased with increasing the contents of alumina and binder. These observations are consistent with in fluence of the constituents on mean alumuna particle distance in tapes suggesting that high strength of the glass infiltrated alumina composites is related to toughening by crack bowing. The biaxial strength and the fracture toughness of the composite containing the optimum constituent composition were 523 MPa and 3.3 MPa$.$1/2 respectively.

  • PDF