• Title/Summary/Keyword: C/C-SiC-Cu

Search Result 540, Processing Time 0.038 seconds

Exploration of growth mechanism for layer controllable graphene on copper

  • Song, Woo-Seok;Kim, Yoo-Seok;Kim, Soo-Youn;Kim, Sung-Hwan;Jung, Dae-Sung;Jun, Woo-Sung;Jeon, Cheol-Ho;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.490-490
    • /
    • 2011
  • Graphene, hexagonal network of carbon atoms forming a one-atom thick planar sheet, has been emerged as a fascinating material for future nanoelectronics. Huge attention has been captured by its extraordinary electronic properties, such as bipolar conductance, half integer quantum Hall effect at room temperature, ballistic transport over ${\sim}0.4{\mu}m$ length and extremely high carrier mobility at room temperature. Several approaches have been developed to produce graphene, such as micromechanical cleavage of highly ordered pyrolytic graphite using adhesive tape, chemical reduction of exfoliated graphite oxide, epitaxial growth of graphene on SiC and single crystalline metal substrate, and chemical vapor deposition (CVD) synthesis. In particular, direct synthesis of graphene using metal catalytic substrate in CVD process provides a new way to large-scale production of graphene film for realization of graphene-based electronics. In this method, metal catalytic substrates including Ni and Cu have been used for CVD synthesis of graphene. There are two proposed mechanism of graphene synthesis: carbon diffusion and precipitation for graphene synthesized on Ni, and surface adsorption for graphene synthesized on Cu, namely, self-limiting growth mechanism, which can be divided by difference of carbon solubility of the metals. Here we present that large area, uniform, and layer controllable graphene synthesized on Cu catalytic substrate is achieved by acetylene-assisted CVD. The number of graphene layer can be simply controlled by adjusting acetylene injection time, verified by Raman spectroscopy. Structural features and full details of mechanism for the growth of layer controllable graphene on Cu were systematically explored by transmission electron microscopy, atomic force microscopy, and secondary ion mass spectroscopy.

  • PDF

Emission Characterization of Particulate Matters According to the Types of Wastes from Industrial Waste Incinerator (산업폐기물 소각시설에서 폐기물 유형에 따른 입자상물질의 배출특성)

  • Park, Jeong-Ho;Suh, Jeong-Min;Jo, Jeong-Gu;Ryu, Jae-Yong;Han, Seong-Jong
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1225-1230
    • /
    • 2007
  • The emissions characteristics of particulate matters(PM) according to the types of wastes from industrial waste incinerator of 800 kg/hr treatment capacity were investigated. For this study, the incinerate waste are as follows; waste resin, waste wood, waste urethane, waste gunny, and waste paper. The particulate samples were collected to be emitted in stack and air pollution control(both cyclone and bag filter). In stack, the concentrations of PM were in the range of 2.61 to $26.51 mg/Sm^3$ and the major chemical species were C, Si, Cl, K, Na, Ca in all the wastes. In cyclone fly ash, the mean content of heavy metal were in the order of Fe > Zn > Pb > Cu > Mn > Cr > Ni > Cd > As > Hg and the heavy metal content of waste resin were Zn 34,197.5 mg/kg, Fe 27,587.6 mg/kg, Pb 6,055.8 mg/kg, respectively. In bag filter fly ash, the mean content of heavy metal were in the order of Zn > Pb > Fe > Cu > Mn > Cd > Cr > Ni > As > Hg and the heavy metal content of waste wood were Pb 36,405.2 mg/kg, Fe 15,762.9 mg/kg, Cu 9,989.5 mg/kg, Cd 2,230.1 mg/kg, respectively. Comparing the heavy metal content of both cyclone and bag filter, in cyclone, the Cr, Fe, Ni content were higher than in bag filter and the Cd, Cu, Hg content were lower than in bag filter.

Homogeneity of Microstructure and Mechanical Properties of Ultrafine Grained OFHC Cu Bars Processed by ECAP (ECAP 가공에 의해 제조된 초미세립 OFHC Cu 봉재의 미세조직 및 기계적 특성의 균질성)

  • Ji, Jung Hoon;Park, Lee-Ju;Kim, Hyung Won;Hwang, Si Woo;Lee, Chong Soo;Park, Kyung Tae
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.474-487
    • /
    • 2011
  • Bars of OFHC Cu with the diameter of 45 mm were processed by equal channel angular pressing up to 16 passes via route $B_c$, and homogeneity of their microstructures and mechanical properties was examined at every four passes which develop the equiaxed ultrafine grains. In general, overall hardness, yield strength and tensile strength increased by 3, 7, and 2 times respectively compared with those of unECAPed sample. Cross-sectional hardness exhibited a concentric distribution. Hardness was the highest at the center of bar and it decreased gradually from center to surface. After 16 passes, overall hardness decreased due to recovery and partial recrystallization. Regardless of the number of passage, yield strength and tensile strength were quite uniform at all positions, but elongation showed some degree of scattering. At 4 passes, coarse and ultrafine grains coexisted at all positions. After 4 passes, uniform equiaxed ultrafine grains were obtained at the center, while uniform elongated ultrafine grains were manifested at the upper half position. At the lower half position, grains were equiaxed but its size were inhomogeneous. It was found that inhomogeneity of grain morphology and grain size distribution at different positions are to be attributed to scattering in elongation but they did not affect strength. The present results reveal the high potential of practical application of equal channel angular pressing on fabrication of large-sized ultrafine grained bars with quite homogeneous mechanical properties.

Scaling up Hydrothermal Synthesis of Na-A Type Zeolite from Natural Siliceous Mudstone and Its Heavy Metal Adsorption Behavior (규질 이암으로부터 Na-A형 제올라이트의 scale-up 수열합성 및 중금속흡착)

  • Bae, In-Kook;Jang, Young-Nam;Shin, Hee-Young;Chae, Soo-Chun;Ryu, Kyoung-Won
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.341-347
    • /
    • 2008
  • The feasibility of commercializing the hydrothermal synthesis of Na-A type zeolite from siliceous mudstone has been conducted using a 50-liter bench-scale autoclave and the application of the zeolite as an environmental remediation agent. Siliceous mudstone, which is widely distributed around the Pohang area, was adopted as a precursor. The siliceous mudstone is favorable for the synthesis of zeolite because it contains 70.7% $SiO_2$ and 10.0% $Al_2O_3$, which are major ingredient of zeolite formation. The synthesis of zeolite was carried out under the following conditions that had been obtained from the previous laboratory-scale tests: 10hr reaction time, $80^{\circ}C$ reaction temperature, $Na_2O/SiO_2$ ratio = 0.6, $SiO_2/Al_2O_3$ ratio = 2.0 and $H_2O/Na_2O$ ratio= 98.6. The crystallinity and morphology of the zeolite formed were similar to those obtained from the laboratory-scale tests. The recovery and cation exchange ion capacity were 95% and 215 cmol/kg, respectively, which are slightly higher than those obtained in laboratory scale tests. To examine the feasibility of the zeolite as an environmental remediation agent, experiments for heavy metal adsorption to zeolite were conducted. Its removal efficiencies of heavy metals in simulated waste solutions decreased in the following sequences: Pb > Cd > Cu = Zn > Mn. In a solution of 1500 mg/L total impurity metals, the removal efficiencies for these impurity metals were near completion (> 99%) except for Mn whose efficiency was 98%. Therefore, the synthetic Na-A type zeolite was proven to be a strong absorbent effective for removing heavy metals.

Changes of Chemical Species in Soil Solution Induced by Heavy Metals (중금속이 토양용액 중 화학종 변화에 미치는 영향)

  • Yang, Jae-E.;Lee, Ki-Won;Kim, Jeong-Je;Lim, Hyung-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.3
    • /
    • pp.263-271
    • /
    • 1995
  • Chemical assessment of soil pollution with heavy metals was made by analyzing the changes in pH, ionic strength, cationic concentration and chemical species in the soil solution. Saturated pastes of the unpolluted soils were made by adding solutions containing Cu or Cd and the final Cu or Cd concentrations were in the range of 0 to 400 mg/kg. After equilibrating for 24 hours at $25^{\circ}C$, the soil solution was extracted from the saturated pastes by the vacuum extraction method and analyzed for pH, electrical conductivity, Cu, Cd, cations and inorganic ligands. Chemical species in soil solution were calculated by the GEOCHEM-PC program employing the input variables of pH, ionic strength(${\mu}$), molar concentrations of cations and ligands. Increasing Cu or Cd additions lowered pH of the soil solution but increased concentrations of Ca, Mg and K resulting in increases of ${\mu}$ of the soil solution. Effects of Cu on lowering pH and increasing ${\mu}$ were greater than those of Cd. Concentrations of Cu or Cd in soil solution were relatively very low as compared to those of additions, but increased linearly with increasing additions representing that concentrations of Cu were higher than those of Cd. At 400 mg/kg additions, concentrations of Cu were in the range of 0.51 to 11.70 mg/L but those of Cd were 34.4 to 88.5 mg/L. Major species of Ca, Mg and K were free ions and these species were equivalent to greater than 95 molar % of the existing respective molar concentrations. These cationic species were not changed by Cu or Cd additions. Major species of Cu in lower pH soils such as SiCL and SL were free $Cu^{2+}$ (>95 molar %), but those in LS having a higher pH were free $Cu^{2-}$ and Cu-hydroxide complex. At 100 mg Cu/kg treatment, $Cu^{2+}$ and Cu-hydroxide complex were equivalent to 73 and 22.4 molar %, respectively. These respective percentages were decreased and increased correspondingly with increasing Cu treatments. Major species of Cd in soil solution were free $Cd^{2+}$ and Cd-chloride complex, representing 79 to 85 molar % for $Cd^{2+}$ and 13 to 20% for Cd-chloride complex at 10 mg Cd/kg treatment. With increasing Cd additions to 400 mg/kg, $Cd^{2+}$ species decreased to $40{\sim}47%$ but Cd-chloride complexes increased to $53{\sim}60$ molar %. These results demonstrated that soil contamination with heavy metals caused an adverse effect on the plant nutritional aspects of soil solution by lowering pH, increasing cations temporarily, and increasing free metal concentrations and species enough to be phytotoxic.

  • PDF

Dielectric Properties of $Ta_2O_{5-X}$ Thin Films with Buffer Layers

  • Kim, In-Sung;Song, Jae-Sung;Yun, Mun-Soo;Park, Chung-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.12C no.4
    • /
    • pp.208-213
    • /
    • 2002
  • The present study describe the electrical performance of amorphous T $a_2$ $O_{5-X}$ fabricated on the buffer layers Ti and Ti $O_2$. T $a_2$ $O_{5-X}$ thin films were grown on the Ti and Ti $O_2$ layers as a capacitor layer using reactive sputtering method. The X-ray pattern analysis indicated that the two as-deposited films were amorphous and the amorphous state was kept stable on the RTA(rapid thermal annealing) at even $700^{\circ}C$. Measurements of dielectric properties of the reactive sputtered T $a_2$ $O_{5-X}$ thin films fabricated in two simple MIS(metal insulator semiconductor), structures, (Cu/T $a_2$ $O_{5}$ Ti/Si and CuT $a_2$ $O_{5}$ Ti $O_2$Si) show that the amorphous T $a_2$ $O_{5}$ grown on Ti showed high dielectric constant (23~39) and high leakage current density(10$^{-3}$ ~10$^{-4}$ (A/$\textrm{cm}^2$)), whereas relatively low dielectric constant (~15) and tow leakage current density(10$^{-9}$ ~10$^{-10}$ (A/$\textrm{cm}^2$)) were observed in the amorphous T $a_2$ $O_{5}$ deposited on the Ti $O_2$ layer. The electrical behaviors of the T $a_2$ $O^{5}$ thin films were attributed to the contribution of Ti- $O_2$ and the compositionally gradient Ta-Ti-0, being the low dielectric layer and high leakage current barrier. In additional, The T $a_2$ $O_{5}$ Ti $O_2$ thin films exhibited dominant conduction mechanism contributed by the Poole-Frenkel emission at high electric field. In the case of T $a_2$ $O_{5}$ Ti $O_2$ thin films were related to the diffusion of Ta, Ti and O, followed by the creation of vacancies, in the rapid thermal treated thin films.films.

Adhesion Properties between Polyimide Film and Copper by Ion Beam Treatment and Imidazole-Silane Compound (이온빔 및 이미다졸-실란 화합물에 의한 폴리이미드 필름과 구리의 접착 특성)

  • Kang, Hyung Dae;Kim, Hwa Jin;Lee, Jae Heung;Suh, Dong Hack;Hong, Young Taik
    • Journal of Adhesion and Interface
    • /
    • v.8 no.1
    • /
    • pp.15-27
    • /
    • 2007
  • Polyimide (PI) surface modification was carried out by ion-beam treatment and silane-imidazole coupling agent to improve the adhesion between polyimide film and copper. Silane-imidazole coupling agent contains imidazole functional groups for the formation of a complex with copper metal through a coordination bonding and methoxy silane groups for the formation of siloxane polymers. The PI film surface was first treated by argon (Ar)/oxygen ($O_2$) ion-beam, followed by dipping it into a modified silane-imidazole coupling agent solution. The results of X-ray photoelectron spectroscopy (XPS) spectra revealed that the $Ar/O_2$ plasma treatment formed oxygen functional groups such as hydroxyl and carbonyl groups on the polyimide film surface and confirmed that the PI surface was modified by a coupling reaction with imidazole-silane coupling agent. Adhesion between copper and the treated PI film by ion-beam and coupling agent was superior to that with untreated PI film. In addition, adhesion of PI film treated by an $Ar/O_2$ plasma to copper was better than that of PI film treated by a coupling agent. The peeled-off layers from the copper-PI film joint were completely different in chemical composition each other. The layer of PI film side showed similar C1s, N1s, O1s spectra to the original Upilex-S and no Si and Cu atoms appeared. On the other hand the layer of copper side showed different C1s and N1s spectra from the original PI film and many Si and Cu atoms appeared. This indicates that the failure occurs at an interface between the imidazole-silane and PI film layers rather than within the PI layers.

  • PDF

Nature of the Interfacial Regions in the Antiferromagnetically-coupled Fe/Si Multilayered Films

  • Moon, J.C.;Y.V. Kudryavtsev;J.Y.Rhee;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.174-174
    • /
    • 2000
  • A strong antiferromagnetic coupling in Fe/Si multilayered films (MLF) had been recently discovered and much consideration has been given to whether the coupling in the Fe/Si MLF system has the same origin as the metal/metal MLF. Nevertheless, the nature of the interfacial ron silicide is still controversial. On one hand, a metal/ semiconductor structure was suggested with a narrow band-gap semiconducting $\varepsilon$-FeSi spacer that mediates the coupling. However, some features show that the nature of coupling can be well understood in terms of the conventional metal/metal multilayered system. It is well known that both magneto-optical (MO) and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In this study, the nature of the interfacial regions is the Fe/Si multilayers has been investigated by the experimental and computer-simulated MO and optical spectroscopies. The Fe/Si MLF were prepared by rf-sputtering onto glass substrates at room temperature with the number of repetition N=50. The thickness of Fe sublayer was fixed at 3.0nm while the Si sublayer thickness was varied from 1.0 to 2.0 nm. The topmost layer of all the Fe/Si MLF is Fe. In order to carry out the computer simulations, the information on the MO and optical parameters of the materials that may constitute a real multilayered structure should be known in advance. For this purpose, we also prepared Fe, Si, FeSi2 and FeSi samples. The structural characterization of Fe/Si MLF was performed by low- and high -angle x-ray diffraction with a Cu-K$\alpha$ radiation and by transmission electron microscopy. A bulk $\varepsilon$-FeSi was also investigated. The MO and optical properties were measured at room temperature in the 1.0-4.7 eV energy range. The theoretical simulations of MO and optical properties for the Fe/Si MLF were performed by solving exactly a multireflection problem using the scattering matrix approach assuming various stoichiometries of a nonmagnetic spacer separating the antiferromagnetically coupled Fe layers. The simulated spectra of a model structure of FeSi2 or $\varepsilon$-FeSi as the spacer turned out to fail in explaining the experimental spectra of the Fe/Si MLF in both intensity and shape. Thus, the decisive disagreement between experimental and simulated MO and optical properties ruled out the hypothesis of FeSi2 and $\varepsilon$-FeSi as the nonmagnetic spacer. By supposing the spontaneous formation of a metallic ζ-FeSi, a reasonable agreement between experimental and simulated MO and optical spectra was obtained.

  • PDF

The study of drawing on the heterogeneous materials for the unidirectional alignment of carbon nanofiber in metal matrix nanocomposite (금속기지 나노복합재용 탄소나노섬유 일방향 배열을 위한 이종재 인발 연구)

  • 백영민;이상관;엄문광;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.301-301
    • /
    • 2003
  • In current study, Nanocomposites are reinforced with carbon nanofiber, carbon nanotube and SiC, etc. Since the nano reinforcements have the excellent mechanical, thermal and electrical properties compared with that of existing composites, it has lately attracted considerable attention in the various areas. Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties. Until now, strengthening of the copper alloy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the alloy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conducting material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the cooer matrix composites of high strength and electric conductivity. In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process and align mechanism as well as optimized drawing process parameter are verified via numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of 10∼20$\mu\textrm{m}$ in length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper. it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber Optimal parameter for drawing process was obtained by analytical and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc. The lower drawing angles and lower reduction areas provides the less rupture of co tube is noticed during the drawing process and the better alignment of carbon nanofiber is obtained.

  • PDF

A Study on Distribution Behavior of Ni and Sb in Reduction products of Cu Matte Converting (동 매트제련의 반응생성물중 Ni와 Sb의 분배거동에 관한 연구)

  • 김영진;이광막;김영홍
    • Resources Recycling
    • /
    • v.8 no.5
    • /
    • pp.44-50
    • /
    • 1999
  • The sbdy iwestlgaled ihc propa-ties of Lhe dust\ulcorner rrom fe~~oallomya ~~ufacturTeh. e chemical composition, cornpasitlon material, p d c l e sire md shapes of the bulk dust, sired dust and magnetically separated durl were mvesligaled. As the re\ulcornerulL, we suppose that the dust from &gh Carbon Fenama~~gunesMc anuiact~vingP rocess is not sufiicient as solulce material of Mn because of ale low Mn canlenl (13.5%) and complicaled composition mate~ial. The dust from Bug F!lter or AOD Proccss is mi~inlym ade up of 0.2-2 pm Mn30, (Hausmam~iu)p iutlde in spherical shape and thc Mn content is 63.190.The dust from Cooler of AOD Process is inninly made up of coarse Ca(O1-Or)zM. n,FeyO,, SiO, and fine Mn30d.

  • PDF