• Title/Summary/Keyword: C$_{60}$ films

Search Result 472, Processing Time 0.029 seconds

The Formation of Pt-Co Alloy Thin Films for RTD Temperature Sensors with Wide Temperature Ranges (광대역 측온저항체 온도센서용 Pt-CO 합금박막의 형성)

  • 김서연;노상수;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.335-338
    • /
    • 1997
  • Platinum-Cobalt alloy thin films were deposited on A1$_2$O$_3$substrate by magnetron cosputtering for RTD temperature sensors with wide temperature ranges. We made Pt-Co alloy resistance patterns on the A1$_2$O$_3$substrate by lift-off method and fabricated Pt-Co alley RTD temperature sensors by using Pt-wire, Pt-paste. We investigated the physical and electrical characteristics of theme films under various conditions, input power, working vacuum, annealing temperature and time, and also after annealing these films. The resistivity and sheet resistivity of these films were decreased with increasing the annealing temperature. At input power of Pt : 4.4 W/cm$^2$, Co : 6.91 W/cm$^2$, working vacuum of 10 mTorr and annealing conditions of 800$^{\circ}C$ and 60 min, the resistivity and sheet resistivity of Pt-Co thin films was 15${\mu}$$\Omega$$.$cm and 0.5$\Omega$/ , respectively, and the TCR value of Pt-Co alloy thin films with thickness of 3000${\AA}$ was 3740ppm/$^{\circ}C$ in the temperature range of 25∼600$^{\circ}C$. These results indicate that Pt-Co alloy thin films hove potentiality for the RTD with wide temperature ranges.

  • PDF

Effects of Curing Temperature on the Optical and Charge Trap Properties of InP Quantum Dot Thin Films

  • Mohapatra, Priyaranjan;Dung, Mai Xuan;Choi, Jin-Kyu;Jeong, So-Hee;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.263-272
    • /
    • 2011
  • Highly luminescent and monodisperse InP quantum dots (QDs) were prepared by a non-organometallic approach in a non-coordinating solvent. Fatty acids with well-defined chain lengths as the ligand, a non coordinating solvent, and a thorough degassing process are all important factors for the formation of high quality InP QDs. By varying the molar concentration of indium to ligand, QDs of different size were prepared and their absorption and emission behaviors studied. By spin-coating a colloidal solution of InP QD onto a silicon wafer, InP QD thin films were obtained. The thickness of the thin films cured at 60 and $200^{\circ}C$ were nearly identical (approximately 860 nm), whereas at $300^{\circ}C$, the thickness of the thin film was found to be 760 nm. Different contrast regions (A, B, C) were observed in the TEM images, which were found to be unreacted precursors, InP QDs, and indium-rich phases, respectively, through EDX analysis. The optical properties of the thin films were measured at three different curing temperatures (60, 200, $300^{\circ}C$), which showed a blue shift with an increase in temperature. It was proposed that this blue shift may be due to a decrease in the core diameter of the InP QD by oxidation, as confirmed by the XPS studies. Oxidation also passivates the QD surface by reducing the amount of P dangling bonds, thereby increasing luminescence intensity. The dielectric properties of the thin films were also investigated by capacitance-voltage (C-V) measurements in a metal-insulator-semiconductor (MIS) device. At 60 and $300^{\circ}C$, negative flat band shifts (${\Delta}V_{fb}$) were observed, which were explained by the presence of P dangling bonds on the InP QD surface. At $300^{\circ}C$, clockwise hysteresis was observed due to trapping and detrapping of positive charges on the thin film, which was explained by proposing the existence of deep energy levels due to the indium-rich phases.

Electrical and Structural Properties of Ferroelectric $LiNbO_3$ Thin films for Nonvolatile Memory applications (비휘발 메모리소자응용을 위한 강유전체 $LiNbO_3$ 박막의 전기적 구조적 특성에 관한 연구)

  • 최유신;정세민;김도영;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.235-238
    • /
    • 1998
  • Ferroelectric $LiNbO_3$ thin films were grown directly on Si(100) substrates by 13.55MHz RF magnetron sputtering system using a ceramic target ($Nb_2O_5/Li_2C0_3$ = 51.4/48.6). Because high temperature process have to avoided to prevent degradation of the interface (insulator/Si), $LiNbO_3$ thin films were deposited below $300^{\circ}C$. After as-deposited films were performed RTA treatments in an oxygen ambient at $600^{\circ}C$ for 60s, electrical measurements performed films before and after anneal treatment. In high field region, the leakage current density of the films after annealing was deceased about 4order and the resistivity of these was increased to about 5\times 10^{11} \Omega \cdot cm$ at 500kV/cm. In accumulation region of C-V curve, we calculated dielectric constant of thin film $LiNbO_3$ as 27.9 which is close to that of bulk value.

  • PDF

A Study On electrical Properties of $Ba_{0.5}/Sr_{0.5}/TiO_3$thin-film capacitor ($Ba_{0.5}/Sr_{0.5}/TiO_3$ 박막 커패시터의 전기적 특성에 관한 연구)

  • 이태일;송재헌;박인철;김홍배;최동환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.33-36
    • /
    • 1999
  • In this paper, $Ba_{0.5}$Sr$_{0.5}$TiO$_3$ thin-films were prepared on Pt/Ti/Si0$_2$/Si substrates by RF magnetron sp-uttering method. We investigated electric and dielectric properties of BST thin-films with various ann-ealing temperature using in-sute RTA. Deposition conditions of BST films were set substrate temperat-ure, 30$0^{\circ}C$ and working gas ratio, Ar:O$_2$=90:10. After BST films deposited, we fabricated a capacitor of MIM structure with Al top electrode for measurement. Post-annealing using RTA performed at 40$0^{\circ}C$, $600^{\circ}C$, 80$0^{\circ}C$ for 60 sec, respectively. Also we exacted crystallization and composition of BST thin-films by XRD analysis. In measurement result, this capacitors showed a dielectric constant of about 200 at 1MHz and leakage current density of 5$\times$10$^{-8}$ A/$\textrm{cm}^2$ at 1.5V Microstructure of BST thin-films exhibited effective quality in low-temperature annealed 71ms than high-temperature annealed 71ms.s.s.

  • PDF

Densification and Electrical Properties of Screen-printed PZT Thick Films (스크린 프린팅법으로 제작한 PZT 후막의 치밀화와 전기적 특성)

  • Park, Sang-Man;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.667-672
    • /
    • 2006
  • Ferroelectric $Pb(Zr_{0.52}Ti_{0.48})O_3$ (PZT(52/48)) thick films were fabricated by the screen-Printing method on the alumina substrates, and $PbTiO_3$ (PT) Precursor solution, which prepared by sol-gel method, was spin-coated on the PZT(52/48) thick films to obtain a densification. Its structural and electrical properties of the PZT(52/48) thick films with the treatment of PT precursor solution coating were investigated. The particle size of the thick films was increased with increasing the number of coatings and the thickness of the PZT-6 (6: number of coatings) films was about $60{\mu}m$. The relative dielectric constant increased and the dielectric loss decreased with increasing the number of PT sol coatings. The relative dielectric constant and dielectric loss of the PZT-6 thick film were 475 and 2 %, respectively. The remanent polarization, coercive field and breakdown strength of the PZT-6 film were $32.6{\mu}C/cm^2$, 15 kV/cm and 60 kV/cm, respectively.

Poly-Si Thin Films by Hot-wire Chemical Vapor Deposition Method (열선 CVD법에 의한 다결정 실리콘 박막증착 및 특성분석)

  • Chung, Y.S.;Lee, J.C.;Kim, S.K.;Youn, K.H.;Song, J.S.;Park, I.J.;Kwon, S.W.;Lim, K.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1030-1033
    • /
    • 2003
  • This paper presents the deposition characterization of polycrystalline silicon films by the HWCVD(Hot-wire Chemical Vapor Deposition) method at low substrate($300^{\circ}C$). The filament temperature, pressure and $SiH_4$ concentration were determined to be a critical parameter for the deposition of poly-Si films. Series A was deposited under the conditions of $1380^{\circ}C$(Tf), 100 mTorr and $2{\sim}10%\{SiH_4/(SiH_4+H_2)\}$ for 60 min. Series B was deposited under the conditions of $1400{\sim}1450^{\circ}C$ (Tf), 30 mTorr and $2{\sim}12%$ for 60 min. The physical characteristics were measured by Raman and FTIR spectroscopy, dark and photoconductivity measurements under AM1.5 illumination.

  • PDF

Characteristics of rapid-thermal-annealed $YBa_2Cu_3O_{7-x}$ high $T_c$, superconducting thin-films (급속 열처리에 의한 $YBa_2Cu_3O_{7-x}$ 고온 초전도체 박막의 특성)

  • Shin, Hyun-Yong;Park, Chang-Yub;Kim, Kyu-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1137-1139
    • /
    • 1993
  • The superconducting thin films of $YBa_2Cu_3O_{7-x}$ were deposited on (100) sapphire substrates at low temperature by rf magnetron sputtering and annealed at $895^{\circ}C$ for 60 sec. using rapid-thermal-annealing(RTA) technique. The films were characterized by SEM, four-point probe resistivity measurement, XRD, and AES. The RTA processed HTS films had a preferential structure with c-axis normal to the substrate surface.

  • PDF

Fabrication and Characterization of PMN-PZT Thick Films Prepared by Screen Printing Method (Screen Printing법을 이용한 PMN-PZT 후막의 제조 및 특성 연구)

  • 김상종;최형욱;백동수;최지원;김태송;윤석진;김현재
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.921-925
    • /
    • 2000
  • Characteristics of Pb(Mg, Nb)O$_3$-Pb(Zr, Ti)O$_3$system thick films fabricated by a screen printing method were investigated. The buffer layer were coated with various thickness of Ag-Pd by screen printing to investigate the effect as a diffusion barrier and deposited Pt as a electrode by sputtering on Ag-Pb layer. The printed thick films were burned out at 650$\^{C}$ and sintered at 950$\^{C}$ in O$_2$condition for each 20, 60min after printing with 350mesh screen. The thickness of piezoelectric thick film was 15∼20㎛ and Ag-Pb layer acted as a diffusion barrier above 3㎛ thickness. The PMN-PZT thick films were screen printed on Pt/Ag-Pb(6m) and sintered by 2nd step (650$\^{C}$/20min and 950$\^{C}$/1h) using paste mixed PMN-PZT and binder in the ratio of 70:30, and the remnant polarization of thick film was 9.1$\mu$C/㎠ in this conditions.

  • PDF

Small Molecular Solar Cells toward Improved Efficiency and Stability

  • Kim, Ji-Hwan;Kim, Hyo-Jeong;Jeong, Won-Ik;Kim, Tae-Min;Lee, Yeong-Eun;Kim, Se-Yong;Kim, Jang-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.73-73
    • /
    • 2011
  • We will report a few methods to improve the efficiency and stability in small molecule based organic solar cells, including the formation of bulk heterojunctions (BHJs) through alternative thermal deposition (ATD), the use of a micro-cavity structure and interface modifications. By ATD which is a simple modification of conventional thermal evaporation, the thicknesses of alternative donor and acceptor layers were precisely controlled down to 0.1 nm, which is critical to form BHJs. The formation of a BHJ in copper(II) phthalocyanine (CuPc) and fullerene (C60) systems was confirmed by AFM, GISAXS and absorption measurements. From analysis of the data, we found that the CuPc|C60 films fabricated by ATD were composed of the nanometer sized disk shaped CuPc nano grains and aggregated C60, which explains the phase separation of CuPc and C60. On the other hand, the co-deposited CuPc:C60 films did not show the existence of separated CuPc nano grains in the CuPc:C60 matrix. The OPV cells fabricated using the ATD method showed significantly enhanced power conversion efficiency compared to the co-deposited OPV cells under a same composition [1]. We will also present by numerical simulation that adoption of microcavity structure in the planar heterojunction can improve the short circuit current in single and tandem OSCs [2]. Interface modifications also allowed us to achieve high efficiency and high stability OSCs.

  • PDF

Fabrication and Characterization of Bi2O3-MgO-ZnO-Nb2O5 Thin Films by Pulsed Laser Deposition (펄스 레이저 증착법으로 제작된 Bi2O3-MgO-ZnO-Nb2O5 박막의 제작 및 특성 분석)

  • Bae, Ki-Ryeol;Lee, Dong-Wook;Elanchezhiyan, J.;Lee, Won-Jae;Bae, Yun-Mi;Shin, Byoung-Chul;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.211-215
    • /
    • 2010
  • Pulsed laser deposition is a very efficient technique for fabricating thin films of complex compounds. In the present work, $Bi_2O_3$-MgO-ZnO-$Nb_2O_5$ (BMZN) pyrochlore thin films were deposited on platinized Si substrates at various temperatures by using pulsed laser deposition technique. These films have been characterized by X-ray diffractometer (XRD), atomic force microscopy (AFM) to investigate their structural, morphological properties. MIM structure was manufactured to analyze di-electrical properties of BMZN thin films. XRD results reveal the thin films deposited at less than $400^{\circ}C$ show only amorphous phase, the crystallized thin films was observed when the thin films were prepared temperature at above $500^{\circ}C$. From AFM, it was known that the thin film grown at $400^{\circ}C$ is the densest. Dielectric constant increased with increasing temperature up to $400^{\circ}C$ at 100 kHz and dramatically decreased at the higher temperature. A aspect of dissipation factor was the exact opposite of dielectric constant. BMZN thin films grown at $400^{\circ}C$ exhibited a high dielectric constant of 60.9, a low dissipation factor of 0.007 at 100 kHz.