• Title/Summary/Keyword: Butterfly Valve

Search Result 104, Processing Time 0.03 seconds

An Optimization for Flow Control Butterfly Valve using Grey Relational Analysis (회색 관계 분석을 이용한 유량 제어용 버터플라이밸브 형상 최적화)

  • Lee, Sang Beom;Lee, Dong Myung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.6
    • /
    • pp.359-366
    • /
    • 2014
  • This paper considered optimization method of appending a shape on a disc in an attempt to improve core functions, which are inherent in flow characteristics. The paper also verifies the optimization method of appendage shape with a Class 150 200A Butterfly valve. Then the design of experiment (DOE) with an orthogonal array is performed to analyze the effect of form parameters by grey relational analysis and analysis of mean (ANOM). And this study sets flow coefficient as an object functions for optimization, and the conventional disc model and the optimal appendage shape on disc model are compared by computational fluid analysis. The paper concludes that an optimal appendage shape on disc model achieves wider usability by a wider operating range.

Structural Safety of Lightweight Valve Disc by Topology Optimization Design based on Computational Simulation (전산 시뮬레이션 기반의 위상최적설계에 의한 경량 밸브디스크의 구조적 안전성)

  • Kim, Taehyung
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.25-33
    • /
    • 2020
  • In this study, flow and structural computational analysis were performed to investigate the structural safety of the lightweight butterfly valve disc designed by topology optimization. After flow analysis, as the opening angle increased, the flow coefficient increased non-linearly and showed a gentle slop. When the opening angle was 12 degree, the cavitation could be predicted. After FE analysis, all FE von-Misses stresses of the lightweight disc were smaller than the yield strength of the material, and all FE maximum deformations were also smaller than the conservative deformation of the previous study. Ultimately, it was confirmed that the structural safety of the lightweight valve disc based on computational analysis is effective.

Shape Design based on Topology Optimization for Manufacturing of Lightweight Valve Disc by 3-D Printing (3차원 프린팅에 의한 경량 밸브 디스크 제조를 위한 위상최적화 기반의 형상 설계)

  • Kim, Taehyung
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.13-19
    • /
    • 2018
  • In this study, the lightweight design of butterfly valve disc component for power plant based on topology optimization was performed. Here, commercial finite element (FE) analysis software was used. The external shape of the basic disc model was not deformed, and the internal element density was removed to make it lightweight. Optimal design was performed each other after the disc plate and two brackets attached on the surface of the disc were separated. Once the optimal shapes were selected, they were assembled to build up the 3-D lightweight valve disc model. After applying pressure to this model, FE analysis was performed to confirm the structural safety.

A Study on the Numerical Analysis of Internal Flow in a Cone Type Valve (Cone Type 밸브 내부유동 수치해석에 관한 연구)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.199-207
    • /
    • 2020
  • These days, many different types of valves are developed in the industrial area according to their use purpose. Multiple kinds of valves are installed to control a flow and pressure of the pipe conveying fluid. Valves serve as critical roles in land plants such as power plants. The performance of equipment varies depending on valve characteristics. In this study, the internal flow analysis on Cone-type valve is conducted to analyze flow field and secure a value of the flow coefficient Cv. According to the internal flow analysis, when the flow distribution of the middle cross-section of valve was open 100%, flow field was relatively and smoothly taken out. If it was open 50%, flow recirculation region increased and a little complex flow field occurred. Unlike ball valve or butterfly valve, this valve had flow recirculation in its outlet depending on a valve opening amount. Therefore, it was found that there was no flow recirculation in the outlet of Cone-type valve.

A Study on Relationship of Flow coefficient and Valve Type for Design of Butterfly Valve (버터플라이 밸브 설계를 위한 밸브 형과 유량 계수와의 관계)

  • Oh, Seung-Hwan;Lee, Young-Hun;Kang, Hyeung-Geol;Song, Hak-Guan;Kang, Jung-Ho;Park, Young-Chul
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.49-53
    • /
    • 2007
  • The valve is used on control of flow in a ship. Flow coefficient of valve is very importance in the design of valve. In this paper, three-dimensional computer simulations by commercial code CFX were conducted to observe the valve type and to measure flow coefficient when valves with various angles and uniform incoming velocity were used in a piping system. By contrast, a group of experimental data is used to compare with the data obtained by CFX simulation to investigate the validity of numerical method.

The Structural Design for Nonlinear Hyperelastic Materials Based on CFD (CFD 기반의 비선형 초탄성 재료의 구조 설계)

  • Jung Dae-Seok;Kim Ji-Young;Lee Jong-Moon;Park Young-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.379-386
    • /
    • 2006
  • The hyper-elastic material has been used gradually and its range was extended all over the industry. The performance prediction of hyper-elastic material was required not only experimental methods but also numerical methods. In this study, we presented the process how to use numerical method for hyper-elastic material and applied it to seat-ring of butterfly valve. The finite element analysis was executed to evaluate the mechanical characteristics of hyper-elastic material. And the optimum model considered conditions and features. According to that model, the load conditions were obtained by using CFD analysis.