• Title/Summary/Keyword: Butter clam shell

Search Result 4, Processing Time 0.015 seconds

Characteristics of the Shells and Calcined Powders from the Butter Clam Saxidomus purpuratus and Littleneck Clam Ruditapes philippinarum as a Natural Calcium Resource (천연칼슘소재로서 개조개(Saxidomus purpuratus)와 바지락(Ruditapes philippinarum) 패각 및 소성분말의 특성)

  • Kim, Jin-Soo;Jung, Nam Young;Soo Jang, Jeong;Lee, Hyun Ji;Park, Sung Hwan;Kim, Min Joo;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.2
    • /
    • pp.168-177
    • /
    • 2015
  • Shell waste from the butter clam Saxidomus purpuratus and littleneck clam Ruditapes philippinarum is a large by-product of shellfish aquaculture, and it is desirable to convert it into value-added products for industrial applications. In this study, calcium carbonate (CaC) polymorphs from butter clam (BCSP) and littleneck clam (LCSP) shell powders and commercial CaC were characterized using Fourier transmission infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results revealed that the optimal calcination conditions to eliminate organic substances and improve solubility for both BCSP and LCSP were $800^{\circ}C$ for 8 h in an electrical furnace. Calcination improved the white index of the butter clam (BCCP) and littleneck clam (LCCP) calcined powder compared with shell powders. The calcium content in BCCP (51.1%) was higher than that of LCCP (44.9%) or commercial calcium oxide (CaO, 44.7%). The XRD patterns of BCCP and LCCP were similar to that of CaO. Cubic-like crystals of CaC and irregular crystals of BCCP and LCCP were observed by SEM. The FT-IR and XRD analyses revealed the presence of calcite and aragonite in the BCSP and aragonite in the LCSP, whereas the CaC contained calcite. These results indicate that butter and littleneck clam shells are potential biomass resources for calcium carbonate and calcium oxide.

Characterization of Calcium Lactate Prepared from Butter Clam Saxidomus purpuratus Shell Powder (개조개(Saxidomus purpuratus) 패각분말로부터 젖산칼슘의 제조 및 특성)

  • Yoon, In Seong;Lee, Gyoon-Woo;Lee, Hyun Ji;Park, Sung Hwan;Park, Sun Young;Lee, Su Gwang;Kim, Jin-Soo;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.3
    • /
    • pp.301-309
    • /
    • 2016
  • To facilitate the effective use of butter clam shell as a natural calcium resource, we determined the optimal conditions for calcium lactate (BCCL) preparation with high solubility using response surface methodology (RSM). The polynomial models developed by RSM for pH, solubility and yield were highly effective in describing the relationships between factors (P<0.05). Increased molar ratios of calcined powder (BCCP) from butter clam shell led to reduced solubility, yield, color values and overall quality. The critical values of multiple response optimization to independent variables were 1.75 M and 0.94 M for lactic acid and BCCP, respectively. The actual values (pH 7.23, 97.42% for solubility and 423.22% for yield) under optimization conditions were similar to the predicted values. White indices of BCCLs were in the range of 86.70–90.86. Therefore, organic acid treatment improved color value. The buffering capacity of BCCLs was strong, at pH 2.82 to 3.80, upon the addition of less than 2 mL of 1 N HCl. The calcium content and solubility of BCCLs were 6.2–16.7 g/100 g and 93.6-98.5%, respectively. Fourier transform analysis of infrared spectroscopy data identified BCCL as calcium lactate pentahydrate, and the analysis of microstructure by field emission scanning electron microscopy revealed an irregular form.

Characteristics and Preparation of Calcium Acetate from Butter Clam (Saxidomus purpuratus) Shell Powder by Response Surface Methodology (반응표면분석법을 이용한 개조개(Saxidomus purpuratus) 패각분말로부터 가용성 초산칼슘의 제조 및 특성)

  • Lee, Hyun Ji;Jung, Nam Young;Park, Sung Hwan;Song, Sang Mok;Kang, Sang In;Kim, Jin-Soo;Heu, Min Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.6
    • /
    • pp.888-895
    • /
    • 2015
  • For effective utilization of butter clam shell as a natural calcium resource, the optimal conditions for preparation of calcium acetate (BCCA) with high solubility were determined using response surface methodology (RSM). The polynomial models developed by RSM for pH, solubility, and yield were highly effective in describing the relationships between factors (P<0.05). Increased molar ratio of calcined powder (BCCP) from butter clam shell led to reduction of solubility, yield, color values, and overall quality. Critical values of multiple response optimization to independent variables were 2.70 M and 1.05 M for acetic acid and BCCP, respectively. The actual values (pH 7.04, 93.0% for solubility and 267.5% for yield) under optimization conditions were similar to predicted values. White indices of BCCAs were in the range of 89.7~93.3. Therefore, color value was improved by calcination and organic acid treatment. Buffering capacity of BCCAs was strong at pH 4.88 to 4.92 upon addition of ~2 mL of 1 N HCl. Calcium content and solubility of BCCAs were 20.7~22.8 g/100 g and 97.2~99.6%, respectively. The patterns of fourier transform infrared spectrometer and X-ray diffractometer analyses from BCCA were identified as calcium acetate monohydrate, and microstructure by field emission scanning electron microscope showed an irregular form.

Assessing the Age and Growth of the Butter Clam Saxidomus purpuratus in Jinhae Bay Using Transmitted Light (투과광을 이용한 한국 진해만 개조개(Saxidomus purpuratus)의 연령과 성장)

  • Lee, Mi-Hee;Kim, Yeonghye;Cha, Byung-Yul;Yoon, Byoung-Sun;Ryu, Dong-Ki;Kim, Sung-Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.5
    • /
    • pp.556-565
    • /
    • 2018
  • The age and growth of butter clams Saxidomus purpuratus were estimated using transmitted light on the shells of 364 samples from January 2017 to December 2017 in Jinhae Bay. Based on monthly variation in the marginal index (MI) of the shell, it is assumed that rings are formed once a year during the period from July to August in this species. The relationship between shell length (SL; mm) and shell height (SH; mm) was expressed by the equation SH=0.8053SL-2.9636 ($R^2=0.94$) and between SL and shell width (SW; mm) by the equation SW=0.5648SL-3.7105 ($R^2=0.90$). The relationship between SL and total weight (TW; g) was expressed by the following equation: $TW=0.00009SL^{3.2141}$ ($R^2=0.96$). von Bertalanffy's growth parameters were estimated using the regression wizard in the SigmaPlot computer program (Systat Software, Inc., v. 10.0). The maximum shell length ($SL_{\infty}$) was 126.16 mm, growth rate was 0.2030/year, theoretical age at shell length 0 ($t_0$) was -0.52 years, and asymptotic total weight ($TW_{\infty}$) was 509.17 g. Growth curves for SL and TW fitted to the von Bertalanffy's equation were expressed as follows: $SL_t=126.16(1-e^{-0.2030(t+0.52)})$, $TW_t=509.17(1-e^{-0.2030(t+0.52)})^{3.2141}$.