• Title/Summary/Keyword: Butt Welded Joint

Search Result 103, Processing Time 0.028 seconds

Thermal Stress Analysis in the Vicinity of Butt Welded Joiny of a Strip (순간가열(瞬間加熱)된 Strip의 과도적열응력해석(過渡的熱應力解析))

  • J.E.,Park;H.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 1973
  • In this paper, it is desired to show a simplified analytical method in estimating the thermal stresses in the heat affected zone of butt welded joint. A finite strip as shown in Fig.1 is taken as a analytical model for stress analysis. Expressing the temperature distributions by Fourier series, the thermal stresses are obtained. From the numerical sample calculation, the following results can be obtained. (1) Thermal stresses can be estimated by the sujected method. (2) The stress component, which is parallel to the weld direction is the largest stress component in major part of the strip. (3) In obtaining a stress component for the engineering purpose, length of the strip can be treated as five times of the thickness with same degree of convergency.

  • PDF

Development of Heat Plate on Butt Welding for PE pipes (PE 배관 맞대기 융착을 위한 열판의 개발)

  • Jin, Hyeong-Guk;Kim, Jae-Seong;An, Dae-Hwan;Lee, Bo-Yeong
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.292-294
    • /
    • 2006
  • Many processes have been introduced to join PE pipes, but most of these methods have lots of disadvantages such as costs and lack of reliability, etc. Recently due to the benefits of cost, safety and reliability, the butt welding has been paid much attention to joint PE pipes. In case of butt welding, the heat plate which is used to melt PE pipes is the most critical equipment. In this study, after developing the heat plate of new shape, the PE double wall pipes with misalignments were butt-welded by using the conventional and developed heat plates and comparison of weld-zones and tensile test was performed. As the results of tensile test, weld-zones using developed heat plate have strength of $147.7{\sim}251.0%$ of weld-zones using conventional heat plate.

  • PDF

Experimental Study on Hardness and Wear Characteristics of Welded Rails (레일 용접부의 경도와 마멸특성에 관한 실험적 연구)

  • 김청균;황준태;나성훈;민경주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.234-243
    • /
    • 1998
  • In this paper, thermite and gas pressure weldings have been used to join rails in-track and analyzed as functions of hardness and wear characteristics. The wear rate of thermite welded rail is low compared with that of gas pressure welded rail, which is tested in a pin-on-disk wear tester. The hardness of thermite welded materials is relatively high and narrow distributed between three zones, welded part, thermally affected zone, and a base matrix. Wear of a welded rail may be a major factor in railroad maintenance costs and failures at the rail-rail butt joint.

  • PDF

Strength Analysis of Joint Between Steel Plate and CFRP Laminated Splice Plates Patched by Adhesive (접착제를 사용한 CFRP와 강재 이음부의 강도 해석)

  • Park, Dae-Yong;Lee, Sang-Youl;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.13-19
    • /
    • 2011
  • This paper presents the stress distribution of the damaged butt joint of steel plate using CFRP laminates when the flange in tension zone of steel box girder is welded by butt welding. When CFRP sheets are patched on tension flange of steel-box girder, the stress distribution of a vertical and normal direction on damaged welding part is shown as parameters such as a variation of the thickness of adhesive, the overlap length with steel, and the modulus of elasticity of CFRP sheets. For the study, we wrote the computer program using the EAS(Enhanced assumed strain) finite element method for plane strain that has a very fast convergency and exact stress for distorted shape.

A Study on the CO $_2$Laser Beam Welding of Thin Steel Sheets and Tailor Welded Blank (박판 $CO_2$레이져 빔 용접과 소재접합일체성형에 관한 연구)

  • 이희석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.159-164
    • /
    • 1996
  • For the purpose of establishing laser welding condition(laser power, welding speed and beam focus) and of evaluating tailor welded blank for three kinds of thin steel sheets of SPCC, SK5M and SUS304 using in the thin plate structure such as automobile, train and so on. Their $CO_2$ laser weldability were primarily tested under various welding condition. SPCC and SUS304 thin sheets showed good weldability under some welding condition. But, high carbon steel sheet SK5M needs heat treatment after welding to obtain higher tensile strength and ductility of the welded joint. And next, laser welding condition. Butt-welded specimens were not nearly broken at weld bead. However, base material were ruptured in the direction of circumference. The forming depths by tailor weld bead. However, base material were ruptured in the direction of circumference. The forming depths by tailor welded blank were SPCC+SPCC=22~25mm, SUS304+SUS304=25~43mm and SK5M+SK5M=13~17mm.

  • PDF

Joint technology between Manganese crossing and rail by Flash Butt Welding (망간크로싱과 레일의 플래시버트 용접 기술 개발)

  • Kwon Ho Jin;Kim Soon Chul;Choi In Suk;Lee Bo Young
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.163-169
    • /
    • 2003
  • In order to develop domestic railway technology, it is necessary that manufacturing technology of turnout should be kept up with update level, because turnout is the core component of high speed railway. Manganese crossing made of high manganese alloy steel is a important component of turnout. So far, this could not have been welded with rail steel due to metallic problem in Korea. However, joint technology hereunder between manganese crossing and rail by using Flash Butt Welding which is developed by Kangwon Railtech Co., Ltd is the state of the art and enable to realize rail continuousness in turnout section, speed up train velocity, reduce maintenance cost, and enhance riding quality.

  • PDF

Fatigue Life Evaluation Model of Welded Joints With Residual Stress (잔류응력을 고려한 용접 이음부의 피로수명 평가 모델)

  • Goo, Byeong-Choon;Yang, Sung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1328-1336
    • /
    • 2004
  • According to our fatigue tests carried out at 20 Hz, R=0.1 on transversely butt-welded joints, fatigue strengths of as-welded specimens, that is, specimens having residual stress are higher than those of annealed specimens in short life range, but vice verse in long life range. This behavior seems to be concerned mainly with residual stress relaxation by applied loading. After analyzing the welding process, we conducted finite element analysis to quantify the degree of residual stress relaxation. By taking into account residual stress relaxation, modified Goodman diagram, and nominal stress, we evaluated the fatigue life of the welded joint from the S-N curve for the parent material. The estimated results are in a good agreement with the experimental results.

Fatigue Life Evaluation Model for Welded feints Based on Nominal Stress and Residual Stress Relaxation (잔류응력 완화를 고려한 공칭응력 기반 용접재의 피로수명 평가 모델)

  • 구병춘;양승용;정흥채;최성규
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.249-251
    • /
    • 2004
  • According to our fatigue tests carried out at 20 ㎐, R=0.1 on transversely butt-welded joints, fatigue strengths of as-welded specimens, that is, specimens having residual stress are higher than those of annealed specimens in short hie range, but vice verse in long life range. This behavior seems to be concerned mainly with residual stress relaxation by applied loading. After analyzing the welding process, we conducted finite element analysis to quantify the degree of residual stress relaxation. By taking into account residual stress relaxation, modified Goodman diagram, and nominal stress, we evaluated the fatigue life of the welded joint from the S-N curve for the parent material. The estimated results are in a good agreement with the experimental results.

  • PDF

Fatigue Life Evaluation of Welded Joints With Residual Stress (잔류응력을 고려한 용접 이음부의 피로수명 평가 모델)

  • Goo, B.C.;Yang, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.108-113
    • /
    • 2004
  • According to our fatigue tests carried out at 20 Hz, R=0.1 on transversely butt~welded joints, fatigue strengths of as-welded specimens, that is, specimens having residual stress are higher than those of annealed specimens in short life range, but vice verse in long life range. This behavior seems to be concerned mainly with residual stress relaxation by applied loading. After analyzing the welding process, we conducted finite element analysis to quantify the degree of residual stress relaxation. By taking into account residual stress relaxation, modified Goodman diagram, and nominal stress, we evaluated the fatigue life of the welded joint from the S-N curve for the parent material. The estimated results are in a good agreement with the experimental results.

  • PDF

TENSILE STRENGTH OF LASER WELDED-TITANIUM AND GOLD ALLOYS (티타늄과 금합금의 레이저 용접부의 인장강도)

  • Song, Yun-Gwan;Ha, Il-Soo;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.200-213
    • /
    • 2000
  • Lasers have given dentistry a new rapid, economic, and accurate technique for metal joining. Although laser welding has been recommended as an accurate technique, there are some limitations with this technique. For example, the two joining surfaces must have a tight-fitting contact, which may be difficult to achieve in some situations. The tensile samples used for this study were made from a custom-made pure titanium and type III gold alloy plates. 27 of 33 specimens were sectioned perpendicular to their long axis with a carborundum disk and water coolant. Six specimens remained and served as the control group. A group of 6 specimens was posed as butt joints in custom parallel positioning device with a feeler gauge at each of three gaps : 0.00, 0.25. and 0.50mm. All specimens were then machined to produce a uniform cross-sectional dimension, none of the specimens was subjected to any subsequent form of heat treatment. Scanning electron microscopy was performed on representative tested specimens at fractured surfaces in both the parent metal and the weld. Vickers hardness was measured at the center of the welds with a micropenetrometer using a force of 300gm for 15 seconds. Measurement was made at approximately $200{\mu}m\;and\;500{\mu}m$ deep from each surface. One-way analysis of variance (ANOVA) and Scheffe's test was calculated to detect differences between groups. The purpose of this study is to compare the strength and properties of the joint achieved at various butt Joint gaps by the laser welding of type III gold alloy and pure titanium tensile specimens in an argon atmosphere. The results of this study were as follows : 1. When indexing and welding pure titanium, there was no decrease in ultimate tensile strength as compared with the unsectioned alloys for indexing gaps of 0.00 to 0.50mm, although with increasing gap size may come increased distortion (p>0.05). 2. When indexing and welding type III gold alloy, there were significant differences in ultimate tensile strength among groups with weld gaps of 0.00mm, 0.25 and 0.50mm, and the control group. Group with butt contact without weld gap demonstrated a significant higher ultimate tensile strength than groups with weld gaps of 0.25 and 0.50mm (p<0.05). 3. When indexing and welding the different metal combination of type III gold alloy and pure titanium, there were significant differences in ultimate tensile strength between groups with weld gaps of 0.00, 0.25, and 0.50mm. However, the mechanical properties of the welded joint would become too brittle to be acceptable clinically (p<0.05). 4. The presence of large pores in the laser welded joint appears to be the most important factor in controlling the tensile strength of the weld in both pure titanium and type III gold alloy.

  • PDF