• Title/Summary/Keyword: Butt Joint

Search Result 270, Processing Time 0.029 seconds

Research on Change of Tensile Strength with Joint Distance and Form in the Roof Composite Waterproofing Method for Synthetic Polymer Waterproofing Sheet (합성고분자계 방수시트를 이용한 옥상 복합방수공법의 접합부 이격거리 및 형태별 인장성능 변화에 관한 연구)

  • Go, Gun-Woong;Heo, Neung-Hoe;Kim, Yun-Ho;Park, Jin-Sang;Song, Je Young;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.65-67
    • /
    • 2012
  • The butt-joint system is widely used as the method of roof composite waterproofing system. However, there is stilll no objective research about proper distance, and proper structure associated with the performance in butt-joint system. In this research, we find proper distance and proper structure in butt-joint system through tensile strength test at joint, and comparative analyze with practical construction material of composite waterproofing sheet.

  • PDF

Design of Welded Joints Using Stress Intensity Factors (응력확대계수를 이용한 용접이음부 설계 연구)

  • Park, Ji-Woo;Gu, Man-Hoi;Choi, Chang;Sung, Wan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1058-1062
    • /
    • 1996
  • The assessments of weld defects by fracture mechanics are performed for design of welded Joints. In general, butt, T-type, and L-type welded joint are useful for welding structure. When linear weld defects are in welded joint, stress intensity factors for each joints are calculated by finite element method. Analysis results are shown for the fracture modes and characteristics of joint types. And they are founded for the weaken order of welded joints being T-type, butt, L-type.

  • PDF

A Study on a Dual Electromagnetic Sensor System for Weld Seam Tracking of I-Butt Joints

  • Kim, J.-W.;Shin, J.-H.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.51-56
    • /
    • 2002
  • The weld seam tracking system for arc welding process uses various kinds of sensors such as arc sensor, vision sensor, laser displacement sensor and so on. Among the variety of sensors available, electro-magnetic sensor is one of the most useful methods especially in sheet metal butt-joint arc welding, primarily because it is hardly affected by the intense arc light and fume generated during the welding process, and also by the surface condition of weldments. In this study, a dual-electromagnetic sensor, which utilizes the induced current variation in the sensing coil due to the eddy current variation of the metal near the sensor, was developed for arc welding of sheet metal I-butt joints. The dual-electromagnetic sensor thus detects the offset displacement of weld line from the center of sensor head even though there's no clearance in the joint. A set of design variables of the sensor was determined far the maximum sensing capability through the repeated experiments. Seam tracking is performed by correcting the position of sensor to the amount of offset displacement every sampling period. From the experimental results, the developed sensor showed the excellent capability of weld seam detection when the sensor to workpiece distance is near less than 5 ㎜, and it was revealed that the system has excellent seam tracking ability for the I-butt joint of sheet metal.

  • PDF

Friction Stir Welding Tool Geometries Affecting Tensile Strength of AA6063-T1 Aluminum Alloy Butt Joint

  • Kimapong, Kittipong;Kaewwichit, Jesada;Roybang, Waraporn;Poonnayom, Pramote;Chantasri, Sakchai
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.145-153
    • /
    • 2015
  • Friction Stir Welding (FSW) is a solid state welding that could successfully weld the difficult-to-weldmaterials such as an aluminum alloy. In this welding process, the stirrer of the welding tool is one of the important factors for producing the perfect sound joint that indicates the higher joint strength. So, this report aims to apply the friction stir welding using various stirrer geometries to weld the AA6063-T1 aluminum alloy butt joint, investigates the mechanical properties of the joint and then compares the mechanical properties with the microstructure of the joint. An experiment was started by applying the friction stir welding process to weld a 6.3 mm thickness of AA6063-T1 aluminum alloy butt joint. A study of the stirrer geometries effect such as a cylindrical geometry, a cone geometry, a left screw geometry and a right screw geometry at a rotational speed of 2000 rpm and a welding speed of 50-200 mm/min was performed. The mechanical properties such as a tensile strength and a hardness of the joint were also investigated and compared with the microstructure of the joint. The results are as follows. A variation of FSW Stirrer shape directly affected the quality AA6063-T1 aluminum alloy butt joint. A cylindrical stirrer shape and a cone stirrer shape produced the void defect at the bottom part of the weld metal and initiated the failure of the joint when the joint was subjected to the load during the tensile test. Left and right screw stirrer shapes gave the sound joint with no void defect in the weld metal and affected to increase the joint strength that was higher than that of the aluminum base metal.

Very long life fatigue behaviors of 16Mn steel and welded joint

  • Liu, Yongjie;He, Chao;Huang, Chongxiang;Khan, Muhammad K.;Wang, Qingyuan
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.889-901
    • /
    • 2014
  • Very long life fatigue tests were carried out on 16Mn steel base metal and its welded joint by using the ultrasonic fatigue testing technique. Specimen shapes (round and plate) were considered for both the base metal and welded joint. The results show that the specimens present different S-N curve characteristics in the region of $10^5-10^9$ cycles. The round specimens showed continuously decreasing tendency while plate specimens showed a steep decreasing step and an asymptotic horizontal one. The fatigue strength of round specimen was found higher than plate specimen. The fatigue strength of as-welded joint was 45.0% of the base material for butt joint and 40% for cruciform as-welded joint. It was found that fracture can still occur in butt joint beyond $5{\times}10^6$ cycles. The cruciform joint has a fatigue limit in the very long life fatigue regime ($10^7-10^9$ cycles). Fatigue strength of butt as-welded joint was much higher as compared to cruciform as-welded joint. Improvement in fatigue strength of welded joint was found due to UPT. The observation of fracture surface showed crack mainly initiated from welded toe at fusion areas or geometric discontinuity sites at the surface in butt joint and from welded toe in cruciform joint.

Behavior of angular distortion in butt joint welding of thin plate structure (맞대기 용접시의 각변형 거동에 관한 연구)

  • 배강열;김희진
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.21-26
    • /
    • 1988
  • The behavior of angular distortion in butt joint wleding of thin plate structure is investigated with an experimental model and partially with a computational model. The experimental model studying the effects of specimene size and degree of restraint on the angular distorion offers a good method for analyzing the behavior of the distrotion. In addition, the distrotion during welding was demonstrated by both experimental measurement and numericla prediciton. The facts evealed in this study are as follows : 1) distrotion angles were changed with variations of specimene wldth. 2) With the restraint, angular distrotion was reduced to 20% to that of free joint. 3) After the restraint being removed, the effect of restraint was also remained. 4) Same heat input per unit thickness caused same amount of distortion. 5) The mode of angular distortion was expected to be changed with expected to be changed with time, i.e. convex movement during heating and concave one during cooling.

  • PDF

Recent Application of Rail Joint Welding in Europe - Flash Butt Welding Gains Increasing Importance

  • Suk, H.G.;Killing, R.;Chung, W.H.;Park, J.U.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • Continuously welded tracks, first introduced on train lines, are being used increasingly in Europe. And the different arc welding methods are only used on minor lines, private tracks and in the manufacturing of switches and crossings. Mobile flash butt welding belongs the future in rail welding on side if new tracks have to be erected. The following contribution reviews the processes available, usual test methods for welded rail joints and various applications.

  • PDF

Influence of the implant-abutment connection design and diameter on the screw joint stability

  • Shin, Hyon-Mo;Huh, Jung-Bo;Yun, Mi-Jeong;Jeon, Young-Chan;Chang, Brian Myung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.126-132
    • /
    • 2014
  • PURPOSE. This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. MATERIALS AND METHODS. Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (${\alpha}$=0.05). RESULTS. The postload removal torque value was high in the following order with regard to magnitude: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). CONCLUSION. The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate.

Bending Strain Effect on the Critical Current of Jointed BSCCO Tapes

  • Shin, Hyung-Seop;Dedicatoria, Marlon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.217-217
    • /
    • 2009
  • In this study, the effect of bending strain on the transport property and critical current of lap and butt-jointed BSCCO tapes have been investigated. The samples were joined using a mechanically controlled jointing procedure. In order to ensure a uniform pressure application at the joint part, a single point contact has been devised and also to achieve a uniform thickness at the joint interface.

  • PDF

Effect of Process Variables on the Flash Butt Welding of High Strength Steel

  • Kim, Y.S.;Kang, M.J.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.24-28
    • /
    • 2003
  • This study was aimed to evaluate the quality of flash welded joints and optimize the welding process for flash butt welding of 780MPa grade high strength steel. And then the relationship between the welding process variables and the joint quality would be established. The effect of process variables between flashing and upsetting process was elucidated. Microstructure observation of the joint indicated that the decarburized band was mainly changed with upsetting process. Width of HAZ was also related to the upsetting conditions rather than the flashing conditions. Generally maximum hardness at HAZ was correlated with Ceq of steel and the empirical relationship was obtained to estimate the HAZ properties. Tensile elongation at the joint was usually decreased with increasing the initial clamping distance. Investigation of fracture surface after tensile and bending tests reveal that the origin of cracking at the joint was oxide inclusions composed of $SiO_2$, MnO, $Al_2O_3$, and/or FeO. The amount of inclusions was dependent on the composition ratio of Mn/Si in steel. If this ratio was above 4, the amount of inclusions was low and then the resistance to cracking at the joint was enough to maintain the joint performance. It was obtained that the flashing process influenced the conditions for the energy input to establish uniform or non­uniform molten layer, while the upsetting conditions influenced the joint strength. Heat input variable during flashing process was also discussed with the joint properties.

  • PDF