• Title/Summary/Keyword: Butanal

Search Result 45, Processing Time 0.038 seconds

Studies on the Processing of Powdered Katsuobushi and Its Flavor Constituents 3. Volatile Flavor Components of Powdered Katsuobushi (분말가쓰오부시의 제조 및 풍미성분에 관한 연구 3. 분말가쓰오부시의 향기성분)

  • OH Kwang-Soo;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.22 no.4
    • /
    • pp.169-176
    • /
    • 1989
  • Volatile flavor components in powdered Katsuobushi were simultaneous trapped by steam distillation-extraction method, and these were fractionated into the neutral, the phenolic, the acidic and the basic fraction. Volatile flavor components in these fraction were analyzed by the high-resolution GC and GC-MS equipped with a fused silica capillary column. The whole steam volatile concentrate consisted of $48\%$ neutral fraction(NF), $35\%$ phenolic fraction(PF), $12\%$ acidic fraction(AF) and $5\%$ basic fraction(BF). Thirty components such as 8 hydrocarbons, 8 aldehydes, 6 furans, 5 alcohols and 3 ketones were identified from NF. And sixteen components such as phenol, guaiacol, dimethoxy phenol, eugenol in PF, twelve components such as propionic, butanoic, isopentanoic, n-hexanoic, heptanoic, octanoic acid in AF, ten components such as 2,6-dimethylpyrazine, 2-nethylpyridine, 2,4-dimethylthiaBole in BF were identified. NF and PF gave a much higher yield than others and were assumed to be indispensable for the reproduction of aroma of powdered Katsuobushi. It was also identified eight components of volatile carbonyl compounds such as ethanal, propanal, butanal, pentanal by 2,4-DNPH method.

  • PDF

Pattern Recognition Analysis for Volatile Compounds of the Whole, Skim, UHT-, HTST-, and LTLT-Milk under LED Irradiations (여러 가지 LED를 처리한 전지유, 무지방 우유, LTLT, UHT, HTST 처리 우유의 휘발성분 패턴 분석)

  • Kim, Ki-Hwa;Hong, Eun-Jeung;Park, Sue-Jee;Kang, Jee-Won;Noh, Bong-Soo
    • Food Science of Animal Resources
    • /
    • v.31 no.4
    • /
    • pp.596-602
    • /
    • 2011
  • The objective of this study was to analyze the pattern recognition of volatile compounds from different types of milk under LED (Light Emitting Dioxide) irradiation for 6 d. Yellow, red, blue, dark, and fluorescent light were produced using LED equipment. A mass spectrometry-based electronic nose and DFA (discriminant function analysis) were used to determine the change in volatiles from different types of milk under LED irradiation. As the LED exposure time was increased, DF1 of whole milk changed considerably under blue light, while that of skim milk changed significantly under red and yellow light irradiation. Among the types of milk tested, the most light-induced oxidation sample was LTLT milk under blue light. The volatile compounds that were shown to increase due to LED treatment in the electronic nose analysis, which was based on MS, were mainly acetaldehyde, propanal, pentanal, hexanal, heptanal, nonanal, 3-methyl butanal, 2-methyl propanal, 2-butanone, 2-pentanone, 2-hexanone, and 2-heptanaone and 2-nonanone.

Characteristics of Volatile Flavor Compounds in Kochujang Prepared with Commercial Enzyme During Fermentation (효소제를 사용한 개량식고추장의 숙성과정 중 휘발성 향기성분의 특성)

  • Choi, Jin-Young;Lee, Taik-Soo
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.207-213
    • /
    • 2003
  • Kochujang was prepared for this study with raw material inoculated by commercial enzyme of amylase and protease. Volati1e compounds of Kochujang were analyzed using a purge and trap method during fermentation and identified with GC-MSD. Total 54 kinds of volatile flavor components like 16 kinds of alcohol, 16 kinds of ester, 7 kinds of acid, 4 kinds of aldehyde, 2 kinds of alkane, 1 kind of benzene, 3 kinds of ketone, 1 kind of alkene, 2 kind of amine, 1 kind of phenol, other 1 were found. Total number of volatile flavor detected right after manufacturing were 23 kinds like 3 kinds of alcohol, 6 kinds of ester, 3 kinds of aldehyde. After 30 days storage, total number of volatile flavor went up to 31 kinds with addition of 4 kinds of alcohol, 1 kind of ester. The total number of volatile flavor after 120 days storage were increased to 49 kinds. Volatile flavor compounds detected during the storage period were total 20 kinds like 6 kinds of alcohol such as 2-methyl-1-propanol, ethanol, 3-methyl-1-butanol, 5 kinds of ester such as ethyl acetate, isoamyl acetate, ethyl butyrate, 3 kinds of aldehyde such as butanal, acetaldehyde and 6 kinds of others. Even though peak area % of flavor compound varied depends on fermentation period, ethanol, ethyl acetate, ethyl butyrate, ethenone, 2-methyl-1-propanol, 3-methyl-1-butanol were the main compounds that consisted of flavor from Kochujang which was made with enzyme treatment. Ethly acetate showed the highest result in the treatment of right after manufacturing, 3-methyl-1-butanol had up to 90th day and ether were the other days.

Volatile Components of Green Tea(Camellia sinensis L. var. Yabukita) by Purge and Trap Headspace Sampler (Purge와 Trap Headspace Sampler를 이용한 녹차의 휘발성 성분)

  • 이재곤;권영주;장희진;곽재진;김옥찬;최영현
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.1
    • /
    • pp.25-30
    • /
    • 1997
  • Volatile components of green tea were isolated by purge and trap headspace method and were analyzed by GC and GC/MSD. And ten headspace volatiles were compared with volatiles isolated by simultaneous distillation-extraction(SDE) method. A total of 99 components were identified in the green tea volatile components, from which 88 components were identified in the headspace volatiles, contained 20 alcohols, 30 hydrocarbons, 21 aldehydes, 10 ketones, 2 acids and 5 miscellaneous components. The major components were low boiling components, such as methyl butanal(3.1%), 1-penten-3-ol(5.48%), 2-penten-1-ol(2.89%), hexanal(5.77%), heptanal(1.90%), and ere 2,4-eptadienal(4.28%), linalool(2.27%), 2,6-dimethyl cyclohexanol(2.57%), $\alpha$-pinene(1.52%), caryophyllene(1.70%), and carbonyl compounds, such as $\alpha$-ionone(2.62%), $\beta$-ionone(2.98%), $\beta$-cyclocitral(2.0%). On the other hand SDE volatiles, from which 64 components were identified, contained 16 alcohols, 16 ydrocarbons, 15 aldehydes, 10 ketones, 3 acids and 4 miscellaneous components. The major components were alcohols, such as, benzyl alcohol(3.79%), linalool(9.52%), terpineol(2.16%), geraniol(2.75%), nerolidol(6.50%), ketones, such as $\alpha$-ionone(1.77%), $\beta$-ionone(4.80%), geranyl acetone(1.82%) and acids, such as hexanoic acid(1.45%), nonanoic acid(1.11%).

  • PDF

Quality Characteristics for Doenjang Using Squid Internal Organs (오징어 내장을 첨가한 된장의 품질 특성)

  • Seo, Ji-Hyung;Jeong, Yong-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.89-93
    • /
    • 2001
  • The quality characteristics of doenjangs added with squid internal organs were evaluated. The contents of moisture, salt and amino type nitrogen were similar among traditional doenjang and squid doenjang(I, II, III). But the color values were different. pH and peroxide value(POV) were high in squid doenjangs. Squid doenjang(I, II, III) contained much taurine($53.26{\sim}170.90\;mg%$) and ${\alpha}-aminobutyric$ acid($35.17{\sim}151.00\;mg%$) which were not detected in traditional doenjang. Also aspartic acid and glutamic acid related to palatable taste, threonine, serine and proline related to sweet tastes were much more in squid doenjangs. Contents of isoleucine and leucine related to bitter taste were similar with traditional doenjangs. Comparing with traditional doenjang, volatile flavor components in squid doenjangs had high ratio of esters such as ethylbutylether and aldehydes such as 2-propanal, 3-methylbutanal in contrast with low alcohols. Especially ethylbutylether, 2-propanol, 3-methyl-1-butanal, 2,6,10,14-tetramethyl-pentadecane, ethyllinoleate were only in squid doenjangs. From the sensory evaluation after 4 weeks, squid doenjang(II) added with 10% squid internal organs obtained the highest scores for taste as differing from traditional soybean paste and squid doenjang(I). But the total acceptability was higher in traditional doenjang because of strong fishy smell and dark color in squid doenjang. After 8 weeks squid doenjang(I, II) obtained high scores for taste and low scores for color and flavor.

  • PDF

Effect of roasting conditions on aromatic compounds and physicochemical characteristics of germinated aromatic rice (Oryza sativa L.-Miryang 302) tea (볶음 공정에 따른 발아 향미차의 향기성분 및 이화학적 특성)

  • Nam, San;Kwon, Yu-Ri;Cho, Jun-Hyun;Seo, Woo-Duck;Choi, Sik-Won;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.23 no.5
    • /
    • pp.673-679
    • /
    • 2016
  • This study was performed to verify the possibility of manufacturing a germinated aromatic rice tea, which was roasted at 200, 250, and $300^{\circ}C$ each for 10, 20, and 30 min. The roasted aromatic rice was analysed physicochemical properties, sensory characteristics and aromatic compounds. The total polyphenol content and DPPH radical scavenging activities of the germinated aromatic rice increased as the roasting temperature and time increased. Total soluble solid contents, turbidity and browning index of the germinated aromatic rice tea also increased was the roasting temperature and roasting time increased. The pH did not change by roasting. The main aromatic components in roasted germinated aromatic rice tea were 2-methyl butanal, 3-methyl butanal, benzaldehyde and nonanal, which increased according to increasing temperature and time. However, those favorable aroma components were decreased at more than $300^{\circ}C$ of roasting temperature. In addition, methyl benzene, pentanol were increased which affect odor aroma. The sensory score of germinated aromatic rice tea also increased with high roasting temperature and time. However, aromatic rice roasted at a higher temperature ($300^{\circ}C$) showed lower sensory score. Therefore roasting temperature and time must be controlled for manufactureing high quality of germinated aromatic rice tea, and the optimun roasting conditions were $250^{\circ}C$ and 30 min, which provide best physicochemical characteristics of aromatic rice tea.

Chracteristics of volatile flavor compounds in improved kochujang prepared with soybean koji during fermentation (콩고오지를 사용한 개량식고추장의 숙성과정 중 휘발성 향기성분의 특성)

  • Choi, Jin-Young;Lee, Taik-Soo;Park, Sung-Oh
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1144-1150
    • /
    • 1997
  • Volatile flavor components of soybean koji kochujang made from a glutinuous rice by improved method were analyzed by using a purge and trap method during fermentation, and identified with GC-MSD. Fifty-six volatile flavor components including 16 alcohols, 15 esters, 7 acids, 4 aldehydes, 5 alkanes, 3 ketones, 1 benzene, 1 alkene, 2 phenol and 2 others were found in improved kochujang. The number of volatile flavor components detected immediately after making kochujang were 32 and increased to 46 components after 30 day of fermentation. The most number 55 of volatile flavor components were found after 90 day of fermentation. Thirty-one kinds of volatile flavor components were commonly found through the fermentation period 9 alcohols such as 2-methyl-1-propanol, ethanol, 3-methyl-1-butanol, 8 esters such as methyl acetate, ethyl acetate, 2-methylpropyl acetate, 3 aldehydes such as butanal, acetaldehyde, furfural and 11 othesrs. Although the various types of peak areas (%) of volatile flavor components were shown in kochujang during the fermentation days, ethanol. ethyl acetate, ethyl butanoate, 2-methylpropyl acetate, 2-methyl-1-propanol and 3-methyl-1-butanol were mainly detected during fermentation. Those might be the major volatile flavor components in kochujang made by improved method. Peak area of ethanol was the highest one among the volatile flavor components at immediately after mashing and 90 day while ethyl acetate showed the highest Peak area after $30{\sim}60$ day of fermentation and 3-methyl-1-butanol showed the highest peak area after $120{\sim}150$ day of fermentation.

  • PDF

A Study on the Condensation Modeling Method for Fast Pyrolysis Gas of Biomass (바이오 매스 급속 열분해 가스의 응축 모델링 기법에 관한 연구)

  • Park, Hun Chae;Choi, Hang Seok;Choi, Yeon Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.107.1-107.1
    • /
    • 2011
  • 최근 석유, 가스, 석탄을 비롯한 화석연료의 다량 사용으로 기후변화, 대기오염 등의 환경문제 및 자원 고갈의 우려 때문에 바이오매스는 중요한 화석연료 대체 에너지 자원으로써 큰 관심을 받고 있다. 바이오매스 자원을 에너지로 전환하는 방법 중 하나인 급속 열분해 공정은 산소가 없는 상태에서 바이오매스를 열적으로 분해하여 액상 상태의 생성물을 회수하는 공정으로, 증기상의 열분해 가스를 응축하여 회수하게 된다. 바이오매스의 급속 열분해에 관한 연구는 주로 바이오매스의 종류와 열분해 조건에 따라 회수되는 바이오 원유의 수율 및 물리 화학적 특성에 관한 연구가 수행되고 있으나, 열분해 가스의 응축에 관한 연구는 응축에 수반되는 복잡한 물리적 현상 때문에 미진하다. 따라서 본 연구에서는 바이오매스의 급속 열분해를 통해 생성되는 증기상의 열분해 가스의 응축 현상을 모사 할 수 있는 모델링 기법에 대해 연구하였다. 급속 열분해 공정을 통해 생성되는 바이오 원유는 수백개의 화합물로 구성되어 있으며, 동일한 바이오매스를 사용한 경우라도 공정조건에 따라 바이오 원유에 포함된 화합물은 달라진다. 따라서 본 연구에서는 바이오 원유의 주요 화합물인 water, propanal, butanal, pentanal, phenol, guaiacol, coniferyl alcohol, formic acid, acetic acid, propanoic acid, butanoid acid를 대상으로 열분해 가스의 응축을 모사하였다. 본 연구에서는 응축 모델링 기법의 검증을 위해 실험결과와 비교하여 정확성을 검증하였으며, 본 연구의 결과를 활용하여 응축 조건 변화에 따른 급속 열분해 가스의 응축률을 예측하고, 이를 이용한 응축 열교환기 설계에 유용하게 사용될 수 있을 것으로 판단된다.

  • PDF

Isolation of Off-flavors and Odors from Tuna Fish Oil Using Supercritical Carbon Dioxide

  • Roh, Hyung-Seob;Park, Ji-Yeon;Park, Sun-Young;Chun, Byung-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.496-502
    • /
    • 2006
  • Off-flavors and unfavorable odors in tuna fish oil were successfully removed and identified using supercritical carbon dioxide extraction, while retaining variable compounds, polyunsaturated fatty acids such as EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid). Samples of oil were extracted in a 100 mL semi-batch stainless steel vessel under conditions which ranged from 8 to 20 MPa and $20\;to\;60^{\circ}C$ with solvent ($CO_{2}$) flows from 10 g/min. GC-MS was used to identify the main volatile components contributing to the off-flavors and odors which included 2-methyl-1-propanol, 2,4-hexadienal, cyclopropane, and octadiene. Analyses of oil extracted at $40^{\circ}C$, 20 MPa showed a 99.8% reduction in dimethyl disulfide. Other significant off-flavors identified were 2-methyl-butene, 3-hydroxy butanal and ethylbenzene.

Major volatile components of cooked glutinous rice (찹쌀밥의 주요 휘발성 성분)

  • Lee, B.Y.;Son, J.R.;Yoon, I.H.;Ushio, Matsukura;Imai, Toru;Akio, Maekawa
    • Applied Biological Chemistry
    • /
    • v.36 no.2
    • /
    • pp.111-114
    • /
    • 1993
  • The volatile components of cooked glutinous rice were investigated. Among more than 100 volatile components of fresh cooked rice, the predominant one was hexanal followed by pentanal, butanal, octanal, heptanal, noananal, acetone and toluene. These eight components comprised about 85% of the total volatiles, and the hexanal comprised about 86% total amount of the eight volatile components. the amount of the eight volatile components and hexanal in cooked glutinous rice were six and nine times more than that of cooked nonglutinous rice, respectively. The amount of volatile components in cooked glutinous rice stored for 72 hours at $70^{\circ}C$ was same with that of in nonglutinous rice immediately after cooking.

  • PDF