• Title/Summary/Keyword: Butadiene

Search Result 570, Processing Time 0.027 seconds

Retentive Force of Adjustable Dental Impression Trays with Different Synthetic Resin Materials (합성수지 재료에 따른 가변형 치과 인상용 트레이의 유지력에 관한 연구)

  • Lee, In-Seob;Lee, jin-Han;Kim, Yu-Lee;Dong, Jin-Keun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.11-21
    • /
    • 2006
  • The adjustable dental impression trays were made for being adjusted their width automatically along the width of patient's dental arch. The purpose of this study was to investigate the retentive force of adjustable dental impression trays made of different synthetic resin materials. Three pairs of adjustable trays were made of ABS(acrylonitrile butadiene styrene) synthetic resin, polyurethane synthetic resin and polycarbonate synthetic resin with a hole and without a rim on the border area of them. The experiment was done with the horse-shoe shaped metal plate to pull out the set impression body from the tray jig which was made for holding the tray on the lower part of Universal Testing Machine(UTM, Zwick Z020, Zwick Co., Germany). After the alginate impression in the tray was allowed to set four minutes, a tensile force was applied at right angles to the tray which had been previously seated on the jig. The force was applied to measure a maximum force by use of UTM at a constant strain rate 100mm per minute. The results obtained in this study were as follows : 1. The upper trays were showed higher retentive force than lower trays in three tray materials. 2. There was no significant difference in the retentive force of the tray materials(p>0.05).

A Study on the resistance of acrylic rubber pressure sensitive adhesives with curing agents and tackifiers (경화제와 점착부여제가 아크릴 고무점착제의 내열성에 미치는 영향)

  • Nam, Kyong min;Kim, Chul Yong;Kim, Eun Seon;Kim, Kwang-Je;Choi, Woo Jin;Kim, Ki-Tae;Park, Myung-Chul
    • Journal of Adhesion and Interface
    • /
    • v.18 no.4
    • /
    • pp.166-170
    • /
    • 2017
  • In this study, acrylic rubber pressure sensitive adhesives was polymerized with 2-ethylhexyl acrylate, styrene, butadiene, 2-hydroxyethyl acrylate, and acrylic acid by controlling the initiator content. The initial tackiness, peel strength, holding power, and heat resistance of the PSAs were investigated by changing the content of tackifier and curing agent. The results showed that the initial tackiness and peel strength increased as the content of tackifier increased, whereas the holding power decreased. Also, the results exhibited that that the initial tackiness, peel strength, and heat resistance decreased as the content of curing agent increased, whereas the holding power and decreased.

Effect of 1,3-Diphenyl-guanidine (DPG) Mixing Step on the Properties of SSBR-silica Compounds

  • Lim, Seok-Hwan;Lee, Sangdae;Lee, Noori;Ahn, Byeong Kyu;Park, Nam;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.81-92
    • /
    • 2016
  • 1,3-Diphenylguanidine (DPG) is commonly used as a secondary accelerator which not only acts as booster of cure but also activating silanization reaction. The aim of this study is to increase the interaction between silica and rubber by using DPG. In this study, mixing was proceeded in two steps. The T-1 compound is mixed DPG with silica and silane coupling agent in the kneader at high temperature which is named as $1^{st}$ mixing step. T-3 compound is mixed DPG with curatives in the two-roll mill at low temperature which is named as $2^{nd}$ mixing step. The T-2 compound is mixed a half of DPG in $1^{st}$ mixing step and the remainder is mixed in $2^{nd}$ mixing step. Total DPG content was equal for all compounds. When DPG is mixed with silica, silane coupling agent during the $1^{st}$ mixing step, a decrease in cure rate and an increase in scorch time can be seen. This indicates that DPG is adsorbed on the surface of silica. during rubber processing. However, bound rubber content is increased and dynamic properties are improved. These results are due to the highly accelerated silanization reaction. However, there are no significant difference in 100%, 300% modulus.

Work Environments and Exposure to Hazardous Substances in Korean Tire Manufacturing

  • Lee, Na-Roo;Lee, Byung-Kyu;Jeong, Si-Jeong;Yi, Gwang-Yong;Shin, Jung-Ah
    • Safety and Health at Work
    • /
    • v.3 no.2
    • /
    • pp.130-139
    • /
    • 2012
  • Objectives: The purpose of this study is to evaluate the tire manufacturing work environments extensively and to identify workers' exposure to hazardous substances in various work processes. Methods: Personal air sampling was conducted to measure polycyclic aromatic hydrocarbons, carbon disulfide, 1,3-butadiene, styrene, methyl isobutyl ketone, methylcyclohexane, formaldehyde, sulfur dioxide, and rubber fume in tire manufacturing plants using the National Institute for Occupational Safety Health Manual of Analytical Methods. Noise, carbon monoxide, and heat stress exposure were evaluated using direct reading instruments. Past concentrations of rubber fume were assessed using regression analysis of total particulate data from 2003 to 2007, after identifying the correlation between the concentration of total particulate and rubber fume. Results: Workers were exposed to rubber fume that exceeded 0.6 mg/$m^3$, the maximum exposure limit of the UK, in curing and production management processes. Forty-seven percent of workers were exposed to noise levels exceeding 85 dBA. Workers in the production management process were exposed to $28.1^{\circ}C$ (wet bulb globe temperature value, WBGT value) even when the outdoor atmosphere was $2.7^{\circ}C$ (WBGT value). Exposures to other substances were below the limit of detection or under a tenth of the threshold limit values given by the American Conference of Governmental Industrial Hygienists. Conclusion: To better classify exposure groups and to improve work environments, examining closely at rubber fume components and temperature as risk indicators in tire manufacturing is recommended.

Recycling of Red Mud as Plastic Fillers (플라스틱 Filler로서의 적니의 재활용)

  • Kim, Jeong Ho;Soh, Young Soo;Kim, Joon-Hyung
    • Clean Technology
    • /
    • v.5 no.2
    • /
    • pp.45-52
    • /
    • 1999
  • Recycling of red mud from the aluminium manufacturing process was investigated to be utilized as plastic fillers. High density polyethylene(HDPE), low density polyethylene(LDPE) and polypropylene(PP) were found to be the suitable plastic material for which red mud can be used as fillers. With the addition of red mud the plastic showed red brown color. As the ratio of amount of red mud to plastic increased, the tensile strength increased while the Izod impact strength decreased. About five percent of ethylene vinyl alcohol(EVA) was needed as an additive to prevent the lowering of impact strength. Maleic anhydride modified polypropylene was effective for reduction of impact strength lowering of PP. Mixed waste plastics containing LDPE, HDPE, PP, polystyrene and ABS could also accommodate red mud as fillers. In this case, significant loss in mechanical properties were observed due to immiscibility between the components. Ethylene propylene rubber(EPR) and styrene butadiene styrene block copolymer (SBS) could be used to improve the impact properties of the commingled waste plastics.

  • PDF

Effect of Surfactant on the Physical Properties and Crosslink Density of Silica Filled ESBR Compounds and Carbon Black Filled Compounds

  • Hwang, Kiwon;Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Kim, Donghyuk;Ryu, Gyeongchan;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.39-47
    • /
    • 2018
  • Styrene-butadiene rubber (SBR) is widely used in tire treads due to its excellent abrasion resistance, braking performance, and reasonable cost. Depending on the polymerization method, SBR is classified into solution-polymerized SBR (SSBR) and emulsion-polymerized SBR (ESBR). ESBR is less expensive and environmentally friendlier than SSBR because it uses water as a solvent. A higher molecular weight is also easier to obtain in ESBR, which has advantages in mechanical properties and tire performance. In ESBR polymerization, a surfactant is added to create an emulsion system with a hydrophobic monomer in the water phase. However, some amount of surfactant remains in the ESBR during coagulation, making the polymer chains in micelles clump together. As a result, it is well-known that residual surfactant adversely affects the physical properties of silica-filled ESBR compounds. However, researches about the effect of residual surfactant on the physical properties of ESBR are lacking. Therefore, in this study we compared the effects of remaining surfactant in ESBR on the mechanical properties of silica-filled and carbon black-filled compounds. The crosslinking density and filler-rubber interaction are also analyzed by using the Flory-Rehner theory and Kraus equation. In addition, the effects of surfactant on the mechanical properties and crosslinking density are compared with the effects of TDAE oil (a conventional processing aid).

Influence of Molecular Size of Liquid BR on Properties of Silica-Filled SBR Compounds (액상 BR의 분자 크기가 실리카로 보강된 SBR 배합물의 특성에 미치는 영향)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.36 no.3
    • /
    • pp.162-168
    • /
    • 2001
  • Low molecular weight polybutadiene (liquid BR) improves the filler dispersion in a silica-filled styrene-butadiene rubber (SBR) compound. In the present work, influence of molecular weight or the liquid BR on properties of a silica-filled SBR compound was studied. Minimum and maximum torques in the rheocurve for the compound containing the liquid BR with higher molecular weight (HLBR) are lower than those for the compound containing the liquid BR with lower one (LLBR) while the delta torques are nearly the same. Mooney scorch time of the compound containing HLBR is faster than that of the compound containing LLBR. Modulus or the compound containing HLBR is lower than that of the compound containing LLBR while tensile strength of the former is higher than that of the latter. The elongation at break of the former is also longer than that of the latter. Stability for the thermal aging at $90^{\circ}C$ for 3 days is less favorable for the former than for the latter.

  • PDF

Effect of Addition of Ground Granulated Blast-furnace Slag on Strength Properties of Autoclaved Polymer-Modified Concrete (오토클레이브 양생 폴리머 시멘트 콘크리트의 강도성상에 미치는 고로슬래그 미분말 혼입의 영향)

  • 주명기
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.608-614
    • /
    • 2002
  • The effects of slag content and polymer-binder ratio on the strength properties of autoclaved SBR-modified concretes using ground granulated blast-furnace slag(slag) and a styrene-butadiene rubber (SBR) latex are examined. As a result, the compressive and tensile strengths of the autoclaved SBR-modified concretes using slag increase with increasing slag content, and reach a maximum at a slag content 40%, and increase with increasing polymer-binder ratio. In particular, the autoclaved SBR-modified concretes with a slag content of 40% provide about three times higher tensile strength than unmodified concretes. Such high strength development is attributed to the high tensile strength of SBR polymer and the improved bond between cement hydrates and aggregates because of the addition of SBR latex.

An Experimental Study on the Mechanical Properties of Fiber Reinforced Fly Ash.Lime.Gypsum Composites (섬유보강 플라이애쉬.석고.복합체의 역학적특성에 관한 실험적 연구)

  • 박승범
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.4
    • /
    • pp.145-155
    • /
    • 1993
  • The results of an experimental study on the manufacture and the mechanical properties of fiber reinforced fly ash$\cdot$lime$\cdot$gypsum composites are presented in this paper. 'The composites using fly ash, lime, and gypsum were prepared with various fibers (PAN-derived and Pitch-derived carbon fiber, alkali-resistance glass fiber) and a small amount of polymer emulsion-styrene butadiene rubber latex (SBR). As the test results show, the manufacturing process technology of fly ash$\cdot$lime$\cdot$gypsum composites was developed and its optimum mix proportions were successfully proposed. And the flexural strength and toughness of fiber reinforced fly ash$\cdot$lime $\cdot$gypsum composites were increased remarkably by fiber contents, but the compressive strength of the composites were influenced by the kinds fiber more than by the fiber contents. Also, the addition of a polymer emulsion to the composites decreased the bulk specific gravity, but the compressive and flexural strength, and the toughness of the composites were not influenced by it, but were considerably improved by increasing fiber contents.

Deposition of Uranium Ions with Modified Pyrrole Polymer Film Electrode (우라늄이온 포집을 위한 수식된 피를 고분자 피막전극)

  • Cha Seong-Keuck;Lee Sang Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.141-145
    • /
    • 2000
  • Anodically Polymerized conducting Polypyrrole film electrode was employed to Pick up uranyl ion with the type of Gr/ppy, xylenol orange modified electrode. To have Porous and oriented ppy film, NBR was applied as precoating agent. The rate constant of polymerization was $3.22\times10^{-3}s^{-1}$ which was 1.6 times smaller value than bare graphite surface. The deposited amount of uranyl iou on $1.70Ccm^{-2}$ of ppy was $1.55\times10^{-4}g$. The matrix effect in artificial seawater was $6.8\%$. The polymer film electrode has a diffusion controlled process in conduction, but the modified Gr/ppy, $X.O^{4-}UO^+$ type was influenced on the ion doping and electronic conduction of film itself owing to increasing of impedance. The capacitance of electrical double layer was respectively enhanced to 56 and 130 times in Gr/ppy, $X.O.^{4-}$ and Gr/ppy, $X.O^{4-}UO^+$ than Grippy type electrode.