• Title/Summary/Keyword: Business Model Approach

Search Result 1,217, Processing Time 0.03 seconds

The Effect of Smart Work Quality on Collective Intelligence and Job Satisfaction (스마트워크 품질이 집단지성 및 직무만족에 미치는 영향)

  • Kim, Hyun-Chul;Kim, Oh-Woo
    • Journal of Distribution Science
    • /
    • v.13 no.5
    • /
    • pp.113-120
    • /
    • 2015
  • Purpose - As the rapid development of ICT has been made recently, many domestic companies are trying to introduce smart work infrastructure. The purpose of institution of smart work is to enhance their performance. To this end, it is necessary to advance the way of working. Developing employees' collective intelligence should be regarded as a prerequisite for advancing the way of working. Job satisfaction of the employees is another important factor to enhance organizational performance. So this study aims to provide the theoretical background of systematic approach to smart work quality by empirically analyzing the effect of smart work quality on collective intelligence and job satisfaction. Research design, data, and methodology - A structural equation model was designed to examine cause-and-effect relationships among three latent variables(smart work quality, collective intelligence, job satisfaction). Three hypotheses were formulated. The first hypothesis is that the effect of smart work quality on collective intelligence will be positively and statistically significant. Likewise, the second hypothesis is that the effect of smart work quality on job satisfaction will be positively and statistically significant. Finally, the third hypothesis is that the effect of collective intelligence on job satisfaction will be positively and statistically significant. Based on the previous researches, 34 questionnaire items were developed to measure the effect of the three variables. The survey was conducted on 162 employees who are working under smart work environment. The number of the effective questionnaires for the analysis was 154. PASW Statistics 18 and AMOS 18 were used for the statistical analysis. Results - The validity and reliability test for questionnaire items have been carried out. From the factor analysis, 1 out of 34 items was eliminated. As a result, 33 out of 34 items were used for analyzing. The values of Cronbach's α ranged from 0.701 to 0.910, indicating the acceptable reliability of the questionnaire items. The values of χ2, df, CFI, TLI, RMSEA of the model are 102.838, 51, 0.949, 0.935, 0.082, respectively. So the structural equation model was statistically significant. The first and third hypotheses were supported. But the second hypothesis was rejected. Conclusions - An analysis using structural equation model showed meaningful implications about the effect of smart work quality on collective intelligence and job satisfaction. First, as the five quality elements of the smart work improved, the level of collective intelligence increased. Second, the statistical analysis showed smart work didn't have a direct effect on job satisfaction, which is inconsistent with the prior findings. The main purpose of smart work is to help achieve greater performance. The companies also need to make efforts to improve job satisfaction of their employees along with achieving greater performance. Third, an organization with higher level of collective intelligence showed greater job satisfaction. The companies under smart work environment need to develop functions to encourage participation, sharing, openness, and collaboration. This research will provide useful information for the companies which want to introduce smart work, distribution information system, management information system, etc.

Housing Welfare Policies in Scandinavia: A Comparative Perspective on a Transition Era

  • Jensen, Lotte
    • Land and Housing Review
    • /
    • v.4 no.2
    • /
    • pp.133-144
    • /
    • 2013
  • It is commonplace to refer to the Nordic countries of Sweden, Norway, Denmark, Finland and Iceland as a distinctive and homogenous welfare regime. As far as social housing is concerned, however, the institutional heritage of the respective countries significantly frames the ways in which social housing is understood, regulated and subsidized, and, in turn, how housing regimes respond to the general challenges to the national welfare states. The paper presents a historical institutionalist approach to understanding the diversity of regime responses in the modern era characterized by increasing marketization, welfare criticism and internationalization. The aim is to provide outside readers a theoretically guided empirical insight into Scandinavian social housing policy. The paper first lines up the core of the inbuilt argument of historical institutionalism in housing policy. Secondly, it briefly introduces the distinctive ideal typical features of the five housing regimes, which reveals the first internal distinction between the universal policies of Sweden and Denmark selective policies of Iceland and Finland. The Norwegian case constitutes a transitional model from general to selective during the past quarter of a decade. The third section then concentrates on the differences between Denmark, Sweden and Norway in which social housing is, our was originally, embedded in a universal welfare policy targeting the general level of housing quality for the entire population. Differences stand out, however, between finance, ownership, regulation and governance. The historical institutional argument is, that these differences frame the way in which actors operating on the respective policy arenas can and do respond to challenges. Here, in this section we lose Norway, which de facto has come to operate in a residual manner, due to contemporary effects of the long historical heritage of home ownership. The fourth section then discusses the recent challenges of welfare criticism, internationalization and marketization to the universal models in Denmark and Sweden. Here, it is argued that the institutional differences between the Swedish model of municipal ownership and the Danish model of independent cooperative social housing associations provides different sources of resistance to the prospective dismantlement of social housing as we know it. The fifth section presents the recent Danish reform of the governance model of social housing policy in which the housing associations are conceived of as 'dialogue partners' in the local housing policy, expected to create solutions to, rather than produce problems in social housing areas. The reform testifies to the strategic ability of the Danish social housing associations to employ their historically grounded institutional relative independence of the public system.

An Empirical Investigation into the Role of Core-Competency Orientation and IT Outsourcing Process Management Capability (핵심역량 지향성과 프로세스 관리역량이 IT 아웃소싱 성과에 미치는 연구)

  • Kim, Yong-Jin;Nam, Ki-Chan;Song, Jae-Ki;Koo, Chul-Mo
    • Asia pacific journal of information systems
    • /
    • v.17 no.3
    • /
    • pp.131-146
    • /
    • 2007
  • Recently, the role of IT service providers has been enlarged from managing a single function or system to reconstructing entire information management processes in new ways to contribute to shareholder value across the enterprise. This movement toward extensive and complex outsourcing agreements has been driven by the assumption that outsourcing information technology functions is a reliable approach to maximizing resource productivity. Hiring external IT service providers to manage part or all of its information-related services helps a firm focus on its core business and provides better services to its clients, thus obtaining sustainable competitive advantage. This practice of focusing on the strategic aspect of outsourcing is referred to as strategic sourcing where the focus is capability sourcing, not procurement. Given the importance of the strategic outsourcing, however, to our knowledge, there is little empirical research on the relationship between the strategic outsourcing orientation and outsourcing performance. Moreover, there is little research on the factor that makes the strategic outsourcing effective. This study is designed to investigate the relationship between strategic IT outsourcing orientation and IT outsourcing performance and the process through which strategic IT outsourcing orientation influences outsourcing performance, Based on the framework of strategic orientation-performance and core competence based management, this study first identifies core competency orientation as a proper strategic orientation pertinent to IT outsourcing and IT outsourcing process management capability as the mediator to affect IT outsourcing performance. The proposed research model is then tested with a sample of 200 firms. The findings of this study may contribute to the literature in two ways. First, it draws on the strategic orientation - performance framework in developing its research model so that it can provide a new perspective to the well studied phenomena. This perspective allows practitioners and researchers to look at outsourcing from an angle that emphasizes the strategic decision making to outsource its IT functions. Second, by separating the concept of strategic orientation and outsourcing process management capability, this study provides practices with insight into how the strategic orientation can work effectively to achieve an expected result. In addition, the current study provides a basis for future studies that examine the factors affecting IT outsourcing performance with more controllable factors such as IT outsourcing process management capability rather than external hard-to-control factors including trust and relationship management. This study investigates the major factors that determine IT outsourcing success. Based on strategic orientation and core competency theories, we develop the proposed research model to investigate the relationship between core competency orientation and IT outsourcing performance and the mediating role of IT outsourcing process management capability on IT outsourcing performance. The model consists of two independent variables (core-competency-orientation and IT outsourcing process management capability), and two dependent variables (outsourced task complexity and IT outsourcing performance). Comprehensive data collection was conducted through an outsourcing association. The survey data were analyzed using a structural analysis method. IT outsourcing process management capability was found to mediate the effect of core competency orientation on both outsourced task complexity and IT outsourcing performance. Further analysis and findings are discussed.

A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm (Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구)

  • Jung, Ye Lim;Kim, Ji Hui;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants. The market information such as market size, market growth rate, and market share is essential for setting companies' business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information. In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies' product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation. Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies' sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513. Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms. The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec. Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.

An Exploratory Study on the Industry/Market Characteristics of the 'Hyper-Growing Companies' and the Firm Strategies: A Focus on Firms with more than Annual Revenue of 100 Million dollars from 'Inc. the 5,000 Fastest-Growing Private Companies in America' (초고성장 기업의 산업/시장 특성과 전략 선택에 대한 탐색적 연구: 'Inc. the 5,000 Fastest-Growing Private Companies in America' 기업 중 연간 매출액 1억 달러 이상 기업을 중심으로)

  • Lee, Young-Dall;Oh, Soyoung
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.2
    • /
    • pp.51-78
    • /
    • 2021
  • Followed by 'start-up', the theme of 'scale-up' has been considered as an important agenda in both corporate and policy spheres. In particular, although it is a term commonly used in industry and policy fields, even a conceptual definition has not been achieved from the academic perspective. "Corporate Growth" in the academic aspect and "Business Growth" in the practical management field have different understandings (Achtenhagen et al., 2010). Previous research on corporate growth has not departed from Penrose(1959)'s "Firm as a bundle of resources" and "the role of managers". Based on the theory and background of economics, existing research has mainly examined factors that contribute to firms' growth and their growth patterns. Comparatively, we lack knowledge on the firms' growth with a focus on 'annual revenue growth rate'. In the early stage of the firms, they tend to exhibit a high growth rate as it started with a lower level of annual revenue. However, when the firms reach annual revenue of more than 100 billion KRW, a threshold to be classified as a 'middle-standing enterprise' by Korean standards, they are unlikely to reach a high level of revenue growth rate. In our study, we used our sample of 333 companies (6.7% out of 5,000 'fastest-growing' companies) which reached 15% of the compound annual growth rate in the last three years with more than USD 100 million. It shows that sustaining 'high-growth' above a certain firm size is difficult. The study focuses on firms with annual revenue of more than $100 billion (approximately 120 billion KRW) from the 'Inc. 2020 fast-growing companies 5,000' list. The companies have been categorized into 1) Fast-growing companies (revenue CAGR 15%~40% between 2016 and 2019), 2) Hyper-growing companies (40%~99.9%), and 3) Super-growing (100% or more) with in-depth analysis of each group's characteristics. Also, the relationship between the revenue growth rate, individual company's strategy choice (market orientation, generic strategy, growth strategy, pioneer strategy), industry/market environment, and firm age is investigated with a quantitative approach. Through conducting the study, it aims to provide a reference to the 'Hyper-Growing Model' that combines the paths and factors of growth strategies. For policymakers, our study intends to provide a reference to which factors or environmental variables should be considered for 'optimal effective combinations' to promote firms' growth.

Color-related Query Processing for Intelligent E-Commerce Search (지능형 검색엔진을 위한 색상 질의 처리 방안)

  • Hong, Jung A;Koo, Kyo Jung;Cha, Ji Won;Seo, Ah Jeong;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.109-125
    • /
    • 2019
  • As interest on intelligent search engines increases, various studies have been conducted to extract and utilize the features related to products intelligencely. In particular, when users search for goods in e-commerce search engines, the 'color' of a product is an important feature that describes the product. Therefore, it is necessary to deal with the synonyms of color terms in order to produce accurate results to user's color-related queries. Previous studies have suggested dictionary-based approach to process synonyms for color features. However, the dictionary-based approach has a limitation that it cannot handle unregistered color-related terms in user queries. In order to overcome the limitation of the conventional methods, this research proposes a model which extracts RGB values from an internet search engine in real time, and outputs similar color names based on designated color information. At first, a color term dictionary was constructed which includes color names and R, G, B values of each color from Korean color standard digital palette program and the Wikipedia color list for the basic color search. The dictionary has been made more robust by adding 138 color names converted from English color names to foreign words in Korean, and with corresponding RGB values. Therefore, the fininal color dictionary includes a total of 671 color names and corresponding RGB values. The method proposed in this research starts by searching for a specific color which a user searched for. Then, the presence of the searched color in the built-in color dictionary is checked. If there exists the color in the dictionary, the RGB values of the color in the dictioanry are used as reference values of the retrieved color. If the searched color does not exist in the dictionary, the top-5 Google image search results of the searched color are crawled and average RGB values are extracted in certain middle area of each image. To extract the RGB values in images, a variety of different ways was attempted since there are limits to simply obtain the average of the RGB values of the center area of images. As a result, clustering RGB values in image's certain area and making average value of the cluster with the highest density as the reference values showed the best performance. Based on the reference RGB values of the searched color, the RGB values of all the colors in the color dictionary constructed aforetime are compared. Then a color list is created with colors within the range of ${\pm}50$ for each R value, G value, and B value. Finally, using the Euclidean distance between the above results and the reference RGB values of the searched color, the color with the highest similarity from up to five colors becomes the final outcome. In order to evaluate the usefulness of the proposed method, we performed an experiment. In the experiment, 300 color names and corresponding color RGB values by the questionnaires were obtained. They are used to compare the RGB values obtained from four different methods including the proposed method. The average euclidean distance of CIE-Lab using our method was about 13.85, which showed a relatively low distance compared to 3088 for the case using synonym dictionary only and 30.38 for the case using the dictionary with Korean synonym website WordNet. The case which didn't use clustering method of the proposed method showed 13.88 of average euclidean distance, which implies the DBSCAN clustering of the proposed method can reduce the Euclidean distance. This research suggests a new color synonym processing method based on RGB values that combines the dictionary method with the real time synonym processing method for new color names. This method enables to get rid of the limit of the dictionary-based approach which is a conventional synonym processing method. This research can contribute to improve the intelligence of e-commerce search systems especially on the color searching feature.

The Effects of Service Employee's Surface Acting on Counterproductive Work Behavior: The Mediating Roles of Emotional Exhaustion (서비스 종업원의 표면행위가 반생산적 과업행동에 미치는 효과에 관한 연구: 감정소모의 매개효과를 중심으로)

  • Kang, Seong-Ho;Chay, Jong-Hak;Lee, Ji-Ae;Hur, Won-Moo
    • Journal of Distribution Science
    • /
    • v.14 no.2
    • /
    • pp.73-82
    • /
    • 2016
  • Purpose - Counterproductive work behavior(CWB) was typically categorized according to the behavior whether it targets other people(i.e., interpersonal CWB: I-CWB). Employing organizations(i.e., organizational CWB: O-CWB) has emerged as major concerns among researchers, managers, and the general public. An abundance of researches has informed us about the understanding for the antecedents of CWB, whereas little is known about the antecedents of CWB directed distribution service in employee's emotional labor. Therefore, the purpose of this research is to propose a research model in which surface acting enhances emotional exhaustion as an emotional labor strategy, which eventually increases counterproductive work behavior(including I-CWM and O-CWB). Research design, data, and methodology - This empirical research data were gathered from the samples of full time frontline hotel employees(including front office, call center, food/beverage, concierge, and room service) in South Korea. Six hotels were selected ranged from four to five stars, including privately owned and joint-venture properties. A convenience sampling method was used to select hotels. Full time frontline hotel employees from the six hotels were surveyed using a self-administered instrument for data collection. With the strong support of hotel managers, a total of 300 questionnaires were distributed, and 252 responses were collected indicating a response rate of 84.0%. In the process of working with the 252 samples, structural equation modeling is employed to test research hypotheses(H1: The relationship between surface acting and Interpersonal counterproductive work behavior(I-CWB) is mediated by emotional exhaustion, H2: The relationship between surface acting and organizational counterproductive work behavior(O-CWB) is mediated by emotional exhaustion). SPSS 18.0 and M-Plus 7.31 software were used for the data analysis. Descriptive statistics were used to assess the distribution of the employee profiles and correlations between factors. M-Plus 7.31 software was used to test the model fit, validity, and reliability of the factors, significance of the relationship between factors, and the effects of factors in the model. Results - To test our mediation hypotheses, we used an analytical strategy suggested by Preacher & Hayes (2008) and Shrout & Bolger (2002). This mediation approach directly tests the indirect effect between the predictor and the criterion variables through the mediator via a bootstrapping procedure. Thus, it addresses some weaknesses associated with the Sobel test. We found that surface acting was positively related to emotional exhaustion. Furthermore, emotional exhaustion was a significant predictor from the two kinds of counterproductive work behavior. In addition, surface acting was not significantly associated with the two kinds of counterproductive work behavior. These results indicated that the surface acting by frontline hotel employees was associated with higher emotional exhaustion, which is related with higher interpersonal counterproductive work behavior(I-CWB) and organizational counterproductive work behavior(O-CWB). In sum, we confirmed that the positive relationship between surface acting and the two kinds of counterproductive work behavior was fully mediated by emotional exhaustion. Conclusions - The current research broadens the conceptual work and empirical studies in counterproductive work behavior literature by representing a fundamental mechanism that how surface acting affects counterproductive work behavior.

Determinants of the Location and Relocation of Domestic Logistics Firms in Korea (focused on complementary commodity flow survey for 2006) (우리나라 국내 화주기업의 입지 및 재입지 선택 특성 분석 (2006년 물류현황보완조사를 중심으로))

  • Do, Hwa-Yong;Jang, Hoon;Kim, Chan-Sung;Won, Jai-Mu
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.1
    • /
    • pp.37-49
    • /
    • 2008
  • In general, most of the firms do not settle down in one place for their pursuit of profit. There are many reasons for the relocation of the firms; procurement of raw material, market area, transportation cost and housing cost. The aspect of national policy, firm relocation has been systemically promoted for the purpose of logistics system efficiency. Nowadays balanced regional development has been issue. Another aspect, many countries have struggled for the preoccupancy of new place because of its production cost saving and curtailment of expenditure. The aim of this article is qualitative and quantitative analysis of relocation influence factors of domestic goods firms in Korea. This article dynamically analyzed the relocation influence factors for domestic goods firms in Korea. For the analysis this article made use of complementary survey (2006) out of the 3rd national logistics survey (2005). The complementary survey conducted pre-business district, business period, relocation reason, etc. This article dynamically analyzed from the three aspects; observation of average residence time in one business district, relocation factors, influence of market area. Analysis shows that relocation of firm is very high rate and the reasons of relocation play compositeness role. The results of determinants of location, firms approach the established market area closely and the firm's relocation is influenced by market area.

A Meta Analysis of Using Structural Equation Model on the Korean MIS Research (국내 MIS 연구에서 구조방정식모형 활용에 관한 메타분석)

  • Kim, Jong-Ki;Jeon, Jin-Hwan
    • Asia pacific journal of information systems
    • /
    • v.19 no.4
    • /
    • pp.47-75
    • /
    • 2009
  • Recently, researches on Management Information Systems (MIS) have laid out theoretical foundation and academic paradigms by introducing diverse theories, themes, and methodologies. Especially, academic paradigms of MIS encourage a user-friendly approach by developing the technologies from the users' perspectives, which reflects the existence of strong causal relationships between information systems and user's behavior. As in other areas in social science the use of structural equation modeling (SEM) has rapidly increased in recent years especially in the MIS area. The SEM technique is important because it provides powerful ways to address key IS research problems. It also has a unique ability to simultaneously examine a series of casual relationships while analyzing multiple independent and dependent variables all at the same time. In spite of providing many benefits to the MIS researchers, there are some potential pitfalls with the analytical technique. The research objective of this study is to provide some guidelines for an appropriate use of SEM based on the assessment of current practice of using SEM in the MIS research. This study focuses on several statistical issues related to the use of SEM in the MIS research. Selected articles are assessed in three parts through the meta analysis. The first part is related to the initial specification of theoretical model of interest. The second is about data screening prior to model estimation and testing. And the last part concerns estimation and testing of theoretical models based on empirical data. This study reviewed the use of SEM in 164 empirical research articles published in four major MIS journals in Korea (APJIS, ISR, JIS and JITAM) from 1991 to 2007. APJIS, ISR, JIS and JITAM accounted for 73, 17, 58, and 16 of the total number of applications, respectively. The number of published applications has been increased over time. LISREL was the most frequently used SEM software among MIS researchers (97 studies (59.15%)), followed by AMOS (45 studies (27.44%)). In the first part, regarding issues related to the initial specification of theoretical model of interest, all of the studies have used cross-sectional data. The studies that use cross-sectional data may be able to better explain their structural model as a set of relationships. Most of SEM studies, meanwhile, have employed. confirmatory-type analysis (146 articles (89%)). For the model specification issue about model formulation, 159 (96.9%) of the studies were the full structural equation model. For only 5 researches, SEM was used for the measurement model with a set of observed variables. The average sample size for all models was 365.41, with some models retaining a sample as small as 50 and as large as 500. The second part of the issue is related to data screening prior to model estimation and testing. Data screening is important for researchers particularly in defining how they deal with missing values. Overall, discussion of data screening was reported in 118 (71.95%) of the studies while there was no study discussing evidence of multivariate normality for the models. On the third part, issues related to the estimation and testing of theoretical models on empirical data, assessing model fit is one of most important issues because it provides adequate statistical power for research models. There were multiple fit indices used in the SEM applications. The test was reported in the most of studies (146 (89%)), whereas normed-test was reported less frequently (65 studies (39.64%)). It is important that normed- of 3 or lower is required for adequate model fit. The most popular model fit indices were GFI (109 (66.46%)), AGFI (84 (51.22%)), NFI (44 (47.56%)), RMR (42 (25.61%)), CFI (59 (35.98%)), RMSEA (62 (37.80)), and NNFI (48 (29.27%)). Regarding the test of construct validity, convergent validity has been examined in 109 studies (66.46%) and discriminant validity in 98 (59.76%). 81 studies (49.39%) have reported the average variance extracted (AVE). However, there was little discussion of direct (47 (28.66%)), indirect, and total effect in the SEM models. Based on these findings, we suggest general guidelines for the use of SEM and propose some recommendations on concerning issues of latent variables models, raw data, sample size, data screening, reporting parameter estimated, model fit statistics, multivariate normality, confirmatory factor analysis, reliabilities and the decomposition of effects.

Analysis of the Value Relevance on International Financial Reporting Standards Fair Value in China (중국의 국제기업회계기준 공정가치의 가치 관련성 분석)

  • Kim, Dong-Il
    • Journal of Digital Convergence
    • /
    • v.12 no.9
    • /
    • pp.75-81
    • /
    • 2014
  • This study is analyzed using the Shanghai stock market and Shenzhen stock market data in order to analyze the usefulness of accounting information to appear from the introduction of international accounting standards in China. Summarized the relevant previous researches for objective study approach, studied the hypothesis based on the empirical analysis and set a hypothesis as adjusting the stuffs to fix in this research model. In this study, Analyzed the hypothesis to input of detailed variables for analyzing the value relevance between periods before fair value and after fair value. Also, in this hypothesis study, analyzed and estimated to affect the quality of information the acceptant period when compare with acceptant periods and before periods of fair value. These results suggested that impact the net asset value per share and earnings per share of the company because the value of the relationship had statistically significant at the level of relevance. Therefore, in the future studies about fair value assessment, will be expected that usefulness of the enterprise value evaluation method enable to discuss it such as critical sucess factors.