• 제목/요약/키워드: Business Management

검색결과 16,902건 처리시간 0.056초

모바일 위치기반서비스(LBS) 관련한 새로운 견해: 서비스사용으로 이끄는 요인들과 사생활염려의 모순 (New Insights on Mobile Location-based Services(LBS): Leading Factors to the Use of Services and Privacy Paradox)

  • 천은영;박용태
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.33-56
    • /
    • 2017
  • 위치기반서비스는 이동기기의 위치정보를 바탕으로 한 향상된 서비스로 최근 스마트폰을 활용한 모바일 응용프로그램에서 부각되고 있다. 하지만 이와 관련한 기술 및 서비스 개발에 비해 위치기반서비스의 사용의도에 관한 실증연구는 아직까지 부족하다. 또한 선행연구들은 어느 한 요인을 중심으로 단편적으로 수행되었으며 사용의도와의 직접적인 영향 관계에 대해 제시하지 못한 한계점을 가지고 있다. 이에 본 연구는 빠른 성장이 기대되는 위치기반서비스 시장에서 위치기반서비스 사용자의 위치기반서비스 수용의도 및 사용에 영향을 미치는 요인들에 관한 모델을 제시하였고 330명을 대상으로 하여 설문조사를 실시하여 이를 조사하였다. 자료를 분석한 결과 서비스 맞춤화, 서비스 품질과 개인적 혁신성은 위치기반서비스의 사용의도에 긍정적인 영향을 미치며 사용의도는 실제사용에 긍정적인 영향을 미치는 것으로 나타났다. 하지만 위치기반서비스의 맥락 하에 서비스 맞춤화와 개인적 혁신성은 사생활보호염려에 영향을 미치지 않으며 사생활보호염려는 위치기반서비스 사용의도에도 영향을 주지 않는 것으로 나타났다. 실제로 위치기반서비스에서 사용자에게 요구되는 정보는 위치에 관한 정보로 금융거래에 관련한 정보에 비해 민감하지 않기 때문에 이러한 결과가 나왔다고 추측할 수 있으면 위치기반서비스 사용자들은 전자상거래와 같은 정보시스템 사용자들에 비해 사생활보호에 대해서 예민하게 받아들이기 보다는 위치기반서비스 사용의 이점을 더 중시한다고 이해할 수 있다. 위치기반서비스의 맞춤화가 사용자의 사용의도에 긍정적인 영향을 미친다는 실증적 결과는 인공지능 등의 기술을 활용하여 사용자의 위치기반 서비스 사용 패턴을 분석함으로써 사용자의 정보수요 특성을 효과적으로 충족시켜줄 수 있는 맞춤화된 서비스의 제공으로 사용자의 사용의도를 강화시킬 수 있음을 시사하고 있다. 본 연구는 모바일 위치기반서비스 사용자의 사용의도와 실제사용에 미치는 요인들을 새롭게 다면적인 측면에서 실증적으로 조사하여 위치기반서비스와 관련하여 새로운 쟁점을 제시했으며 위치기반서비스 사용자의 사용의도와 실제사용에 대한 이해의 폭을 넓혔다는 점에서 의의가 있다. 또한 본 연구의 결과는 위치기반서비스 시장의 성장과 사용자들에 대한 효과적 대응 전략을 수립하는데 도움이 될 것으로 기대된다.

클라우드 컴퓨팅 관련 논문의 서지정보 및 인용정보를 활용한 연구 동향 분석: 사회 네트워크 분석의 활용 (Research Trend Analysis Using Bibliographic Information and Citations of Cloud Computing Articles: Application of Social Network Analysis)

  • 김동성;김종우
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.195-211
    • /
    • 2014
  • 클라우드 컴퓨팅 서비스는 IT 자원을 사용자 요구에 따라 서비스 형태로 제공하며, IT 자원을 소유하는 기존의 개념에서 빌려서 사용하는 개념으로 새로운 IT 패러다임 전환을 이끌고 있다. 이러한 클라우드 컴퓨팅은 과거의 네트워크 컴퓨팅, 유틸리티 컴퓨팅, 서버 기반 컴퓨팅, 그리드 컴퓨팅 등에 대한 연구들을 기반으로 진화해온 IT 서비스로서, 추후 여러분야에 접목 가능성이 높음에 따라 다양한 분야에서의 연구가 지속적으로 이루어지고 있다. 본 연구에서는 1994년부터 2012년까지 주요 해외 저널에 게재된 클라우드 컴퓨팅 관련 연구 논문들의 서지정보 및 인용정보를 수집하였으며, 사회 네트워크 분석 척도를 활용하여 연구 논문간의 인용 관계와 동일 논문에 출현하는 키워드간의 관계로부터 연구 주제들 간 네트워크 변화를 분석하였다. 이를 통해서 클라우드 컴퓨팅 관련 분야의 연구 주제들간의 관계를 파악할 수 있었고, 추후 잠재성이 높은 신규 연구 주제들을 도출하였다. 또한 본 연구에서는 클라우드 컴퓨팅에 대한 연구 동향 맵(research trend map)을 작성하여, 클라우드 컴퓨팅과 관련된 연구 주제들의 동태적인 변화를 확인하였다. 이러한 연구 동향 맵을 통해서 클라우드 컴퓨팅 주요 연구들의 추이를 쉽게 파악 할 수 있으며, 진화 형태 또는 유망 분야를 설명할 수 있다. 논문 인용 관계 분석 결과, 클라우드 컴퓨팅 보안과 분산 처리, 클라우드 컴퓨팅에서의 광네트워크에 관한 연구 논문들이 페이지랭크 척도를 기준으로 상위에 나타났다. 연구 논문의 핵심 주제를 나타내는 키워드에 대한 결과는 2009년에는 클라우드 컴퓨팅과 그리드 컴퓨팅이 높은 중심성 수치를 보였으며, 2010~2011년에는 데이터 아웃소싱, 에러검출 방법, 인프라구축 등 주요 클라우드 요소 기술에 관한 키워드가 높은 중심성 수치를 나타내었다. 2012년에는 보안, 가상화, 자원 관리 등이 높은 중심성 수치를 보였으며, 이를 통해서 클라우드 컴퓨팅 기술들에 대한 관심이 점차 증가함을 확인 할 수 있다. 연구 동향 맵 작성 결과, 보안은 유망영역에 위치하고 있으며, 가상화는 유망영역에서 성장 영역으로 이동하였고, 그리드 컴퓨팅과 분산 시스템은 쇠퇴 영역으로 이동하고 있음을 확인 할 수 있다.

고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형 (The Audience Behavior-based Emotion Prediction Model for Personalized Service)

  • 유은정;안현철;김재경
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.73-85
    • /
    • 2013
  • 정보기술의 비약적 발전에 힘입어, 오늘날 기업들은 지금까지 축적한 고객 데이터를 기반으로 맞춤형 서비스를 제공하는 것에 많은 관심을 가지고 있다. 고객에게 소구하는 맞춤형 서비스를 효과적으로 제공하기 위해서는 우선 그 고객이 처한 상태나 상황을 정확하게 인지하는 것이 중요하다. 특히, 고객에게 서비스가 전달되는 이른바 진실의 순간에 해당 고객의 감정 상태를 정확히 인지할 수 있다면, 기업은 더 양질의 맞춤형 서비스를 제공할 수 있을 것이다. 이와 관련하여 사람의 얼굴과 행동을 이용하여 사람의 감정을 판단하고 개인화 서비스를 제공하기 위한 연구가 활발하게 이루어지고 있다. 얼굴 표정을 통해 사람의 감정을 판단하는 연구는 좀 더 미세하고 확실한 변화를 통해 정확하게 감정을 판단할 수 있지만, 장비와 환경의 제약으로 실제 환경에서 다수의 관객을 대상으로 사용하기에는 다소 어려움이 있다. 이에 본 연구에서는 Plutchik의 감정 분류 체계를 기반으로 사람들의 행동을 통해 감정을 추론해내는 모형을 개발하는 것을 목표로 한다. 본 연구는 콘텐츠에 의해 유발된 사람들의 감정적인 변화를 사람들의 행동 변화를 통해 판단하고 예측하는 모형을 개발하고, 4가지 감정 별 행동 특징을 추출하여 각 감정에 따라 최적화된 예측 모형을 구축하는 것을 목표로 한다. 모형 구축을 위해 사람들에게 적절한 감정 자극영상을 제공하고 그 신체 반응을 수집하였으며, 사람들의 신체 영역을 나누었다. 특히, 모션캡쳐 분야에서 널리 쓰이는 차영상 기법을 적용하여 사람들의 제스쳐를 추출 및 보정하였다. 이후 전처리 과정을 통해 데이터의 타임프레임 셋을 20, 30, 40 프레임의 3가지로 설정하고, 데이터를 학습용, 테스트용, 검증용으로 구분하여 인공신경망 모형을 통해 학습시키고 성과를 평가하였다. 다수의 일반인들을 대상으로 수집된 데이터를 이용하여 제안 모형을 구축하고 평가한 결과, 프레임셋에 따라 예측 성과가 변화함을 알 수 있었다. 감정 별 최적 예측 성과를 보이는 프레임을 확인할 수 있었는데, 이는 감정에 따라 감정의 표출 시간이 다르기 때문인 것으로 판단된다. 이는 행동에 기반한 제안된 감정예측모형이 감정에 따라 효과적으로 감정을 예측할 수 있으며, 실제 서비스 환경에서 사용할 수 있는 효과적인 알고리즘이 될 수 있을 것으로 기대할 수 있다.

불균형 데이터 집합의 분류를 위한 하이브리드 SVM 모델 (A Hybrid SVM Classifier for Imbalanced Data Sets)

  • 이재식;권종구
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.125-140
    • /
    • 2013
  • 어떤 클래스에 속한 레코드의 개수가 다른 클래스들에 속한 레코드의 개수보다 매우 많은 경우에, 이 데이터 집합을 '불균형 데이터 집합'이라고 한다. 데이터 분류에 사용되는 많은 기법들은 이러한 불균형 데이터에 대해서 저조한 성능을 보인다. 어떤 기법의 성능을 평가할 때에 적중률뿐만 아니라, 민감도와 특이도도 함께 측정하여야 한다. 고객의 이탈을 예측하는 문제에서 '유지' 레코드가 다수 클래스를 차지하고, '이탈' 레코드는 소수 클래스를 차지한다. 민감도는 실제로 '유지'인 레코드를 '유지'로 예측하는 비율이고, 특이도는 실제로 '이탈'인 레코드를 '이탈'로 예측하는 비율이다. 많은 데이터 마이닝 기법들이 불균형 데이터에 대해서 저조한 성능을 보이는 것은 바로 소수 클래스의 적중률인 특이도가 낮기 때문이다. 불균형 데이터 집합에 대처하는 과거 연구 중에는 소수 클래스를 Oversampling하여 균형 데이터 집합을 생성한 후에 데이터 마이닝 기법을 적용한 연구들이 있다. 이렇게 균형 데이터 집합을 생성하여 예측을 수행하면, 특이도는 다소 향상시킬 수 있으나 그 대신 민감도가 하락하게 된다. 본 연구에서는 민감도는 유지하면서 특이도를 향상시키는 모델을 개발하였다. 개발된 모델은 Support Vector Machine (SVM), 인공신경망(ANN) 그리고 의사결정나무 기법 등으로 구성된 하이브리드 모델로서, Hybrid SVM Model이라고 명명하였다. 구축과정 및 예측과정은 다음과 같다. 원래의 불균형 데이터 집합으로 SVM_I Model과 ANN_I Model을 구축한다. 불균형 데이터 집합으로부터 Oversampling을 하여 균형 데이터 집합을 생성하고, 이것으로 SVM_B Model을 구축한다. SVM_I Model은 민감도에서 우수하고, SVM_B Model은 특이도에서 우수하다. 입력 레코드에 대해서 SVM_I와 SVM_B가 동일한 예측치를 도출하면 그것을 최종 해로 결정한다. SVM_I와 SVM_B가 상이한 예측치를 도출한 레코드에 대해서는 ANN과 의사결정나무의 도움으로 판별 과정을 거쳐서 최종 해를 결정한다. 상이한 예측치를 도출한 레코드에 대해서는, ANN_I의 출력값을 입력속성으로, 실제 이탈 여부를 목표 속성으로 설정하여 의사결정나무 모델을 구축한다. 그 결과 다음과 같은 2개의 판별규칙을 얻었다. 'IF ANN_I output value < 0.285, THEN Final Solution = Retention' 그리고 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn'이다. 제시되어 있는 규칙의 Threshold 값인 0.285는 본 연구에서 사용한 데이터에 최적화되어 도출된 값이다. 본 연구에서 제시하는 것은 Hybrid SVM Model의 구조이지 특정한 Threshold 값이 아니기 때문에 이 Threshold 값은 대상 데이터에 따라서 얼마든지 변할 수 있다. Hybrid SVM Model의 성능을 UCI Machine Learning Repository에서 제공하는 Churn 데이터 집합을 사용하여 평가하였다. Hybrid SVM Model의 적중률은 91.08%로서 SVM_I Model이나 SVM_B Model의 적중률보다 높았다. Hybrid SVM Model의 민감도는 95.02%이었고, 특이도는 69.24%이었다. SVM_I Model의 민감도는 94.65%이었고, SVM_B Model의 특이도는 67.00%이었다. 그러므로 본 연구에서 개발한 Hybrid SVM Model이 SVM_I Model의 민감도 수준은 유지하면서 SVM_B Model의 특이도보다는 향상된 성능을 보였다.

CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석 (Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.141-154
    • /
    • 2019
  • 인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.

창의적인 UCC 제작에 영향을 미치는 동기 및 보상 체계에 대한 연구: 몰입에 매개 효과를 중심으로 (An Empirical Study on Motivation Factors and Reward Structure for User's Createve Contents Generation: Focusing on the Mediating Effect of Commitment)

  • 김진우;양승화;임성택;이인성
    • Asia pacific journal of information systems
    • /
    • 제20권1호
    • /
    • pp.141-170
    • /
    • 2010
  • User created content (UCC) is created and shared by common users on line. From the user's perspective, the increase of UCCs has led to an expansion of alternative means of communications, while from the business perspective UCCs have formed an environment in which an abundant amount of new contents can be produced. Despite outward quantitative growth, however, many aspects of UCCs do not meet the expectations of general users in terms of quality, and this can be observed through pirated contents and user-copied contents. The purpose of this research is to investigate effective methods for fostering production of creative user-generated content. This study proposes two core elements, namely, reward and motivation, which are believed to enhance content creativity as well as the mediating factor and users' committement, which will be effective for bridging the increasing motivation and content creativity. Based on this perspective, this research takes an in-depth look at issues related to constructing the dimensions of reward and motivation in UCC services for creative content product, which are identified in three phases. First, three dimensions of rewards have been proposed: task dimension, social dimension, and organizational dimention. The task dimension rewards are related to the inherent characteristics of a task such as writing blog articles and pasting photos. Four concrete ways of providing task-related rewards in UCC environments are suggested in this study, which include skill variety, task significance, task identity, and autonomy. The social dimensioni rewards are related to the connected relationships among users. The organizational dimension consists of monetary payoff and recognition from others. Second, the two types of motivations are suggested to be affected by the diverse rewards schemes: intrinsic motivation and extrinsic motivation. Intrinsic motivation occurs when people create new UCC contents for its' own sake, whereas extrinsic motivation occurs when people create new contents for other purposes such as fame and money. Third, commitments are suggested to work as important mediating variables between motivation and content creativity. We believe commitments are especially important in online environments because they have been found to exert stronger impacts on the Internet users than other relevant factors do. Two types of commitments are suggested in this study: emotional commitment and continuity commitment. Finally, content creativity is proposed as the final dependent variable in this study. We provide a systematic method to measure the creativity of UCC content based on the prior studies in creativity measurement. The method includes expert evaluation of blog pages posted by the Internet users. In order to test the theoretical model of our study, 133 active blog users were recruited to participate in a group discussion as well as a survey. They were asked to fill out a questionnaire on their commitment, motivation and rewards of creating UCC contents. At the same time, their creativity was measured by independent experts using Torrance Tests of Creative Thinking. Finally, two independent users visited the study participants' blog pages and evaluated their content creativity using the Creative Products Semantic Scale. All the data were compiled and analyzed through structural equation modeling. We first conducted a confirmatory factor analysis to validate the measurement model of our research. It was found that measures used in our study satisfied the requirement of reliability, convergent validity as well as discriminant validity. Given the fact that our measurement model is valid and reliable, we proceeded to conduct a structural model analysis. The results indicated that all the variables in our model had higher than necessary explanatory powers in terms of R-square values. The study results identified several important reward shemes. First of all, skill variety, task importance, task identity, and automony were all found to have significant influences on the intrinsic motivation of creating UCC contents. Also, the relationship with other users was found to have strong influences upon both intrinsic and extrinsic motivation. Finally, the opportunity to get recognition for their UCC work was found to have a significant impact on the extrinsic motivation of UCC users. However, different from our expectation, monetary compensation was found not to have a significant impact on the extrinsic motivation. It was also found that commitment was an important mediating factor in UCC environment between motivation and content creativity. A more fully mediating model was found to have the highest explanation power compared to no-mediation or partially mediated models. This paper ends with implications of the study results. First, from the theoretical perspective this study proposes and empirically validates the commitment as an important mediating factor between motivation and content creativity. This result reflects the characteristics of online environment in which the UCC creation activities occur voluntarily. Second, from the practical perspective this study proposes several concrete reward factors that are germane to the UCC environment, and their effectiveness to the content creativity is estimated. In addition to the quantitive results of relative importance of the reward factrs, this study also proposes concrete ways to provide the rewards in the UCC environment based on the FGI data that are collected after our participants finish asnwering survey questions. Finally, from the methodological perspective, this study suggests and implements a way to measure the UCC content creativity independently from the content generators' creativity, which can be used later by future research on UCC creativity. In sum, this study proposes and validates important reward features and their relations to the motivation, commitment, and the content creativity in UCC environment, which is believed to be one of the most important factors for the success of UCC and Web 2.0. As such, this study can provide significant theoretical as well as practical bases for fostering creativity in UCC contents.

쇼핑 웹사이트 탐색 유형과 방문 패턴 분석 (Analysis of shopping website visit types and shopping pattern)

  • 최경빈;남기환
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.85-107
    • /
    • 2019
  • 온라인 소비자는 쇼핑 웹사이트에서 특정 제품군이나 브랜드에 속한 제품들을 둘러보고 구매를 진행할 수 있고, 혹은 단순히 넓은 범위의 탐색 반경을 보이며 여러 페이지들을 돌아보다 구매를 진행하지 않고 이탈할 수 있다. 이러한 온라인 소비자의 행동과 구매에 관련된 연구는 꾸준히 진행되어왔으며, 실무에서도 소비자들의 행동 데이터를 바탕으로 한 서비스 및 어플리케이션이 개발되고 있다. 최근에는 빅데이터 기술의 발달로 소비자 개인 단위의 맞춤화 전략 및 추천 시스템이 활용되고 있으며 사용자의 쇼핑 경험을 최적화하기 위한 시도가 진행되고 있다. 하지만 이와 같은 시도에도 온라인 소비자가 실제로 웹사이트를 방문해 제품 구매 단계까지 전환될 확률은 매우 낮은 실정이다. 이는 온라인 소비자들이 단지 제품 구매를 위해 웹사이트를 방문하는 것이 아니라 그들의 쇼핑 동기 및 목적에 따라 웹사이트를 다르게 활용하고 탐색하기 때문이다. 따라서 단지 구매가 진행되는 방문 외에도 다양한 방문 형태를 분석하는 것은 온라인 소비자들의 행동을 이해하는데 중요하다고 할 수 있다. 이러한 관점에서 본 연구에서는 온라인 소비자의 탐색 행동의 다양성과 복잡성을 설명하기 위해 실제 E-commerce 기업의 클릭스트림 데이터를 기반으로 세션 단위의 클러스터링 분석을 진행해 탐색 행동을 유형화하였다. 이를 통해 각 유형별로 상세 단위의 탐색 행동과 구매 여부가 차이가 있음을 확인하였다. 또한 소비자 개인이 여러 방문에 걸친 일련의 탐색 유형에 대한 패턴을 분석하기 위해 순차 패턴 마이닝 기법을 활용하였으며, 같은 기간 내에 제품 구매까지 완료한 소비자와 구매를 진행하지 않은 채 방문만 진행한 소비자들의 탐색패턴에 대한 차이를 확인할 수 있었다. 본 연구의 시사점은 대규모의 클릭스트림 데이터를 활용해 온라인 소비자의 탐색 유형을 분석하고 이에 대한 패턴을 분석해 구매 과정 상의 행동을 데이터 기반으로 설명하였다는 점에 있다. 또한 온라인 소매 기업은 다양한 형태의 탐색 유형에 맞는 마케팅 전략 및 추천을 통해 구매 전환 개선을 시도할 수 있으며, 소비자의 탐색 패턴의 변화를 통해 전략의 효과를 평가할 수 있을 것이다.

소비자 감성 기반 뷰티 경험 패턴 맵 개발: 화장품을 중심으로 (Development of Beauty Experience Pattern Map Based on Consumer Emotions: Focusing on Cosmetics)

  • 서봉군;김건우;박도형
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.179-196
    • /
    • 2019
  • 최근의 '똑똑한 소비자(Smart Consumer)'라 불리는 소비자가 많아지고 있는데, 이들은 제조사나 광고를 통해 전달되는 정보에 의존하지 않고, 기존 사용자나 전문가들의 후기, 여러 과학 지식을 획득하여 제품에 대한 이해를 높이고, 본인 스스로가 직접 판단하여 구매하고 있다. 특히나 화장품 분야는 인체 유해성과 같은 부정적인 요소에 대한 민감도가 높고, 자신의 고유한 피부 특성과의 조화도 고려되어야 하기 때문에, 전문적인 지식과 타인의 경험, 본인의 과거 경험 등을 종합적으로 생각하여 구매 의사결정을 내려야 하고, 이에 대해서 적극적인 소비자가 많아지고 있다. 이러한 움직임은 '셀프 뷰티' 와 같은 '셀프' 문화의 열풍과 함께, 문화 현상인 '그루밍족'의 등장, 사회적 트렌드인 'K-뷰티' 와도 동행한다고 할 수 있다. 맞춤형 화장품에 대한 관심의 급부상도 이러한 현상 중 하나라 볼 수 있다. 소비자들의 맞춤형 화장품의 니즈를 충족시키기 위해, 화장품 제조사나 관련 기업들은 ICT기술과의 융합을 통하여 프리미엄 서비스를 중심으로 소비자의 니즈에 대응하고 있다. 그러나 기업 및 시장 현황이 맞춤형 화장품을 향해 진화하고 있지만, 소비자의 피부 상태, 추구하는 감성, 실제 제품이나 서비스까지 소비자 경험을 전체적으로 완전하게 다루는 지능형 데이터 플랫폼은 부재한다. 본 연구에서는 소비자 경험에 대한 지능형 데이터 플랫폼 구축을 위한 첫 단계로 소비자 언어 기반의 화장품 감성 분석을 수행하였다. 소비자들 개인의 선호나 취향이 분명한 앰플/세럼 카테고리를 중심으로 매출 순위 1위에서 99위까지의 99개 제품을 선정하여, 블로그와 트위터 등의 SNS 상에 언급되는 후기 내에 화장품 경험에 대한 소비자 감성을 수집하였다. 총 357개의 감성 형용사를 수집하였고, 고객 여정 워크샵을 통해 유사 감성을 합치고, 중복 감성을 통합하는 작업을 수행하였으며, 최종 76개 형용사를 구축했다. 구축한 형용사에 대한 SOM 분석을 통해 화장품에 대한 소비자 감성에 대한 클러스터링을 실시했다. 분석 결과, 총 8개의 클러스터를 도출했고, 클러스터 별 각 노드의 벡터 값을 기준으로 소비자 감성 Top 10을 도출했다. 소비자 감성을 기준으로 클러스터별 소비자 감성에 서로 다른 특징이 발견됐으며, 소비자에 따라 다른 소비자의 감성을 선호, 기존과는 다른 소비자 감성을 고려한 추천 및 분류 체계가 필요함을 확인했다. 연구 결과를 통해 감성 분석의 활용 도메인이 화장품만이 아닌 다양한 영역으로 확장될 수 있음 확인했으며, 감성 분석을 통한 소비자 인사이트를 도출할 수 있다는 점을 시사했다. 또한, 본 연구에서 활용한 디자인 씽킹(Design Thinking)의 방법론의 적용하여 화장품 특화된 감성 사전을 과학적인 프로세스로 구축했으며, 화장품에 대한 소비자의 인지 및 심리에 대한 이해를 도울 수 있을 것으로 기대한다.

자아조절자원 및 해석수준이 공짜대안 선택에 미치는 영향 (The Effects of Self-regulatory Resources and Construal Levels on the Choices of Zero-cost Products)

  • 이진용;임승아
    • Asia Marketing Journal
    • /
    • 제13권4호
    • /
    • pp.55-76
    • /
    • 2012
  • 사람들이 돈을 지불하지 않고 무료로 얻을 수 있는 공짜제품을 과다하게 선호하는 현상을 '공짜효과'라 한다. 기존 연구들에 의하면 공짜제품에 주어지는 특별한 가치 때문에 이와 같은 효과가 발생한다. 본 연구는 공짜효과가 항상 나타나는 것이 아니라 심리적 변수에 의하여 조절될 수 있다는 것을 보이기 위하여 자아조절자원과 해석수준의 조절효과를 살펴보았다. 자아조절자원이 고갈되면 통제의 힘이 약해져서 가격에 대한 민감도가 감소할 뿐만 아니라 직관적이고 노력을 별로 기울이지 않는 정보처리과정을 통해 의사결정을 수행한다. 또한, 주어진 정보를 어떤 해석수준에서 처리하는가에 따라 선택이 달라진다. 고차원 해석수준에서 중심기능을 바탕으로 대안의 바람직성에 따라서 선택하는 반면, 저차원 해석수준에서 부가기능을 바탕으로 대안의 실행가능성에 초점을 두어 선택한다. 이와 같은 특성이 공짜효과의 크기에 미치는 영향을 살펴보는 것이 본 연구의 가장 중요한 목적이다. 자아조절자원과 해석수준에 의해서 공짜효과의 크기가 조절될 수 있다는 사실을 검증하기 위해 2개의 실험설계를 채용하였다. 두 실험 모두에서 기존연구에서 사용한 실험재(키세스와 페레로로쉐 초콜릿)를 이용했다. 실험 1은 자아조절자원 고갈 여부가 공짜효과에 미치는 영향을 검증했다. 자아조절자원 고갈과 비고갈 집단으로 나누어 공짜대안이 있는 선택과업과 그렇지 않은 과업에 할당했다. 자아조절자원이 고갈되지 않은 집단에서 공짜효과가 확실하지만, 자아조절자원이 고갈된 집단에서 공짜효과가 약해진다는 것을 밝혔다. 실험 2는 해석수준이 공짜효과에 미치는 영향을 검증했다. 실험 2는 '왜(why)'와 '어떻게(how)'를 이용해 해석수준을 조작했으며, 실험 1과 유사하게 공짜대안이 존재하는 의사결정과업과 존재하지 않는 과업에 할당한 뒤 공짜대안 선택에 미치는 영향을 확인하였다. 고차원 해석수준의 집단은 저차원 해석수준의 집단에 비하여 공짜제품 선택비율이 낮았다.

  • PDF

점포선택속성이 브랜드 태도에 미치는 영향에 관한 연구: 6개 메이저 브랜드 커피전문점을 중심으로 (Study on the Effects of Shop Choice Properties on Brand Attitudes: Focus on Six Major Coffee Shop Brands)

  • 이원호;김수옥;이상윤;윤명길
    • 유통과학연구
    • /
    • 제10권3호
    • /
    • pp.51-61
    • /
    • 2012
  • 본 연구는 커피 시장에 대한 시장 규모가 커지고 점차 확대되고 있는 대형 브랜드 커피전문점을 중심으로 점포선택 속성(가격, 종업원서비스, 점포의 입지, 점포 분위기)을 4가지로 규정하여, 그 선택속성들과 커피전문점 이용자의 특성이 어떠한 관계가 있는 가를 알아보자 하였으며, 또한 커피전문점의 브랜드 태도에는 어떠한 영향을 미치는 바를 조사하였다. 그 결과 이용자의 특성에 따라 차이가 났지만 점포선택속성 중 점포의 분위기와 점포입지가 점포선택 속성에 가장 큰 영향을 미치는 것으로 나타났다. 따라서 이러한 결과를 토대로 본 연구는 커피전문점이 충성고객을 확보하기 위해 어떠한 속성에 중점을 두어야 하며 아울러 소비자의 욕구에 부합되는 선택 속성을 연구하고자 한다. 특히, 유통학문의 연구방법론은 크게 2가지로 규범적 연구방법론, 실증적 연구방법론(경험적 분석기법, 통계적 분석기법)이 있는데, 이중에 본 연구는 실증적 연구방법론중에서 통계적 분석기법을 활용한다. 본 연구의 한계점으로는 첫째, 응답자의 분포가 수도권에 편중되어 있다는 것이다. 본 연구에 이용된 2차 자료를 보면 서울지역의 응답자 수는 경기도 지역에 비해 압도적으로 많았고 경기도 지역의 응답자 수 또한 6대 광역시에 비해 압도적으로 많았다. 따라서 지역 표본이 해당 지역의 모집단을 대표하는데 어느 정도의 한계가 있다고 판단된다. 둘째, 응답자의 비율을 측정척도로 사용한 점이다. 본 연구에서 점포선택속성에 대한 지각정도와 브랜드 선호도를 측정함에 있어서 응답자의 비율을 척도로 사용하였는데 이를 통해 점포선택속성과 브랜드 선호도 간의 관계, 집단 간 차이를 비교적 정확하게 규명하기에는 한계가 따른다. 따라서 향후 연구에서는 위의 한계점을 보완하고 다음과 같은 추가적인 연구가 필요할 것이라 판단된다. 커피전문점들이 점차 지방으로 확대되어 가고 있는 추세에 비추어 볼 때, 6대 광역시 뿐만 아니라 지방 소도시의 소비자들까지 포함하여 설문조사를 실행하여 1차 자료를 수집하는 것이다. 특히 설문조사에서 관련된 변수들을 리커트 척도로 측정하되 점포선택속성에 대한 지각정도, 브랜드 선호도 외에도 재 구매의도까지 포함시킬 수 있다. 따라서 상관관계분석, 다중회귀분석, 분산분석 등을 통해 더욱 정교한 실증분석을 실행하여 소비자의 태도와 행동에 대한 보다 세밀한 분석결과를 도출해야 할 것으로 사료된다.

  • PDF