• Title/Summary/Keyword: Bus capacitor

Search Result 108, Processing Time 0.028 seconds

A Study on the Optimal Reactive Power Calculation Method of Induction Generator for Marine Small Hydraulic Power (해양 소수력발전용 유도발전기의 최적 무효전력 산정방식에 관한 연구)

  • Lee, Won-Jae;Oh, Yong-Taek
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.100-107
    • /
    • 2013
  • Since the West Sea experiences a big difference in tides, the output power of the small marine hydroelectric power plant varies with the tide. When an induction generator is used here for small hydroelectric power, the reactive power capacitor should be installed at the generator main bus to compensate for the changes in power. As such, the sizing method for the power compensation of the induction generator is reviewed and an optimal method for compensation is suggested. The self-excitation minimum capacitor capacity method, which prevents high voltages, and the power factor automatic control method, which retains a power factor of greater than 90% are reviewed. The compensation effect of reactive power is confirmed through a case study.

A Study on the Voltage/Var Control of Distribution System Using Kohonen Neural Network (코호넬 신경회로망을 이용한 배전시스템의 전압/무효전력 제어게 관한 연구)

  • Kim, Gwang-Won;Kim, Jong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.329-331
    • /
    • 1998
  • This paper presents a modified Learning Vector Quantization rule to control shunt capacitor banks and feeder voltage regulators in electric distribution systems with Kohonen Neural Network(KNN). The objective of the KNN is on-line decision of the optimal state of shunt capacitor banks and feeder voltage regulators which minimize $I^{2}R$ losses of the distribution system while maintaining all the bus voltages within the limits. The KNN is tested on a distribution system with 30 buses, 5 on-off switchable capacitor banks and a nine tap line voltage regulator.

  • PDF

Power Flow Control of a Multi-bus/Three-feeder Distribution System Using Generalized Unified Power Quality Conditioner

  • Mohammed, B.S.;Ibrahim, R.;Perumal, N.;Rao, K.S. Rama
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.8-17
    • /
    • 2015
  • This paper analyses the power flow of a three-feeder/multi-bus distribution system by a custom Generalized Power Quality Conditioner (GUPQC). The GUPQC has been realized by three voltage source converters (VSCs) coupled back-to-back through a common DC-link capacitor on the DC-side. One feeder was controlled by the shunt compensator, whereas each of the other two feeders was controlled by the proposed novel series compensator. The GUPQC has the capability to simultaneously compensate voltage and current quality problems of a multi-bus/three-feeder distribution system. Besides that, the power can be transferred from one feeder to other feeders to compensate for poor power quality problems. Extensive simulation studies were carried out by using MATLAB/SIMULINK software to establish the ability of the GUPQC to improve power quality of the distribution systems under distorted supply voltage conditions.

A Study on the Learning GUI for the Load Flow of Power System (전력조류계산을 위한 학습용GUI에 관한 연구)

  • Lee, Hee-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.27-29
    • /
    • 2004
  • This paper presents improved teaching and learning Gill for easily analysis tool of load flow of power system. This GUI includes not only contingency analysis function, but also calculating power loss from transmission line flow. The Gill is friendly for study for power system operation and control because picture provide a better visualizing of relationships between input parameters and effect than a tabula type result. This Gill enables topology and the output data of load flow for line outages to be shown on same picture page. Users can input the system data for power flow on the the picture and can easily see the the result diagram of bus voltage, bus power, line flow. It is also observe the effects of different types of variation of tap, shunt capacitor, loads level, line outages. Proposed Gill has been studied on the Ward-Hale 6-Bus system.

  • PDF

Maximizing the Overall Satisfaction Degree of all Participants in the Market Using Real Code-based Genetic Algorithm by Optimally Locating and Sizing the Thyristor-Controlled Series Capacitor

  • Nabavi, Seyed M.H.;Hajforoosh, Somayeh;Hajforoosh, Sajad;Karimi, Ali;Khafafi, Kamran
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.493-504
    • /
    • 2011
  • The present paper presents a genetic algorithm (GA) to maximize social welfare and perform congestion management by optimally placing and sizing one Thyristor-Controlled Series Capacitor (TCSC) device in a double-sided auction market. Simulation results, with line flow constraints before and after the compensation, are compared through the Sequential Quadratic Programming SQP method, and are used to analyze the effect of TCSC on the congestion levels of modified IEEE 14-bus and 30-bus test systems. Quadratic, smooth and nonsmooth (with sine components due to valve point loading effect) generator cost curves, and quadratic smooth consumer benefit functions are considered. The main aims of the present study are the inclusion of customer benefit in the social welfare maximization and congestion management objective function, the consideration of nonsmooth generator characteristics, and the optimal locating and sizing of the TCSC using real code-based GA to guarantee fast convergence to the best solution.

Optimal Allocation of Shunt Capacitor-Reactor Bank in Distribution System with Dispersed Generators Considering Installation and Maintenance Cost (분산전원을 포함한 배전계통에서 설치비용과 유지보수 비용을 고려한 병렬 캐패시터-리액터 Bank의 최적 설치 위치 선정)

  • Heo, Jae-Haeng;Lyu, Jae-Kun;Lee, Woo-Ri;Park, Jong-Young;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1511-1519
    • /
    • 2013
  • This paper proposes the allocation method for capacitor-reactor banks in a distribution system with dispersed generators to reduce the installation costs, the maintenance costs and minimize the loss of electrical energy. The expected lifetime and maintenance period of devices with moving parts depends on the total number of operations, which affects the replacement and maintenance period for aging equipment under a limited budget. In this paper, the expected device lifetimes and the maintenance period are included in the formulation, and the optimal operation status of the devices is determined using a genetic algorithm. The optimal numbers and locations for capacitor-reactor banks are determined based on the optimal operation status. Simulation results in a 69-bus distribution system with the dispersed generator show that the proposed technique performs better than conventional methods.

DC Rail Side Series Switch and Parallel Capacitor Snubber-Assisted Edge Resonant Soft-Switching PWM DC-DC Converter with High-Frequency Transformer Link

  • Morimoto, Keiki;Fathy, Khairy;Ogiwara, Hiroyuki;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 2007
  • This paper presents a novel circuit topology of a DC bus line series switch and parallel snubbing capacitor-assisted soft-switching PWM full-bridge inverter type DC-DC power converter with a high frequency planar transformer link, which is newly developed for high performance arc welding machines in industry. The proposed DC-DC power converter circuit is based upon a voltage source-fed H type full-bridge soft-switching PWM inverter with a high frequency transformer. This DC-DC power converter has a single power semiconductor switching device in series with an input DC low side rail and loss less snubbing capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge arms and DC bus line can achieve ZCS turn-on and ZVS turn-off transition commutation. Consequently, the total switching power losses occurred at turn-off switching transition of these power semiconductor devices; IGBTs can be reduced even in higher switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules can be realized at 60 kHz. It is proved experimentally by power loss analysis that the more the switching frequency increases, the more the proposed DC-DC power converter can achieve a higher control response performance and size miniaturization. The practical and inherent effectiveness of the new DC-DC converter topology proposed here is actually confirmed for low voltage and large current DC-DC power supplies (32V, 300A) for TIG arc welding applications in industry.

Real time phase current estimation for brushless DC motor drive system by using front current of dc-link capacitor (직류단 캐패시터 전단 전류를 이용한 상 전류 추정 알고리즘)

  • Lee, Won;Moon, Jong-Joo;Kim, Jang-Mok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.805-811
    • /
    • 2016
  • This paper proposes an estimation algorithm of phase currents of inverter systems with the planar bus bars for brush-less DC (BLDC) motors. The planar bus bar can improve the characteristic of the EMC(Electro-Magnetic Compatibility). In these inverters, a single current sensor of the dc-link measures the sum of a smooth capacitor current and phase currents of brush-less DC motor. Thus, it is essential to extract phase currents from the measured single current to control BLDC motor. Therefore, in this paper, the phase current is estimated by analyzing equivalent circuits of the BLDCM in ON and OFF periods of switching elements. The usefulness of the proposed algorithm is verified through experimental results.

A Study on the Service Reliability and Power Quality Improvement Using Hybrid Type Capacitor Bank (하이브리드 타입 커패시터 뱅크를 이용한 공급신뢰도 및 전력품질 개선 방안 연구)

  • Lee, Hansang;Yoon, Dong-Hee
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.313-319
    • /
    • 2014
  • The objectives of power system operations are to preserve system stability and reliability as well as to supply proper electric power. For an activation of these objectives, voltage and reactive power should be considered. There are a number of types about reactive power sources, and an insertion of shunt capacitor banks are one of the method to support bus voltage adjacent. This paper includes the design procedure to determine the hybrid type capacitor bank configurations on power system to improve stability and reliability. This procedure includes the capacitor bank capacity calculation, reactor type selection, and reactor capacity calculation. The total capacity calculation of capacitor bank is based on the reactive power margin which is calculated through system studies such as, contingency analysis and Q-V analysis. In the second step, the reactor type and its capacity can be determined through the harmonic analysis. This paper shows that the harmonics are decreased by the proposed hybrid type capacitor bank, especially 5th and 7th harmonics.

An Improved SVPWM Control of Voltage Imbalance in Capacitors of a Single-Phase Multilevel Inverter

  • Ramirez, Fernando Arturo;Arjona, Marco A.
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1235-1243
    • /
    • 2015
  • This paper presents a modified Space Vector Pulse Width Modulation Technique (SVPWM), which solves the well-known problem of voltage imbalance in the capacitors of a single-phase multilevel inverter. The proposed solution is based on the measurement of DC voltage levels at each capacitor of the inverter DC bus. The measurements are then used to adjust the size of the active vectors within the SVPWM algorithm to keep the voltage waveform sinusoidal regardless of any voltage imbalance on the DC link capacitors. When a voltage deviation exceeds a predetermined hysteresis band, the correspondent voltage vector is restricted to restore the voltage level to an acceptable threshold. Hence, the need for external voltage regulators for the voltage capacitors is eliminated. The functionality of the proposed algorithm is successfully demonstrated through simulations and experiments on a grid tied application.