• Title/Summary/Keyword: Burning time

Search Result 346, Processing Time 0.029 seconds

An Experimental Study on Lean-burn Limit and Emission Characteristics of Air-fuel Ratio in a CNG Engine (수소-CNG 혼소기관의 공기과잉률 변화에 따른 희박가연한계 및 배출가스 특성에 관한 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, JEONGSOO;Lee, Seong-Uk;KIM, SUNMOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2017
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the lean combustion limit and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

An Experimental Study on Performance and Emission Characteristics of Hydrogen Mixtures in a CNG Engine (CNG 기관의 수소혼합률 변화에 따른 성능 및 배출가스 특성에 관한 실험적 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, SUNMOON;KIM, JEONGSOO;LEE, SEANGWOCK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.357-364
    • /
    • 2016
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the combustion stability and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

An Study on the Optimization of Sub-chamber Geometry in CVC with Sub-chamber (부실을 가진 정적연소기에서 부실형상의 최적화 연구)

  • Park, Jong-Sang;Kang, Byung-Mu;Yeum, Jung-Kuk;Ha, Jong-Yul;Chung, Sung-Sik
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • An experimental study was carried out to obtain the fundamental data about the effects of radical ignition on premixture combustion. A CVC(constant volume combustor) divided into the sub-chamber and the main chamber was used. Numerous narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in tile sub-chamber derives the simultaneous multi-point ignition in the main chamber. We have examined the effects of the sub-chamber volume, the diameter and number of passage holes, and the equivalence $ratio({\Phi})$ on the combustion characteristics by means of burning pressure measurement and flame visualization. In a CVC, the overall burning time including the ignition delay became very short and the maximum burning pressure was slightly increased by the radical ignition(RI) method in comparison with those by the conventional spark ignition(SI) method. Combustible lean limit by RI method is extended by ${\Phi}=0.25$ compared with that by SI method. Also, In cases of charging the number and the diameter for the fixed total cross section of the passage holes, combustion period increased significantly at a sub-chamber with a single hole, but those of the other conditions had almost a similar tendency in the sub-chamber with 4 or more holes. regardless of equivalence ratio. Therefore, it was Proved that a critical cross section exists with the number of passage holes.

  • PDF

CBT Combustion Precise Modeling and Analysis Using VOF and FSI Methods (VOF와 FSI 방법을 적용한 CBT 연소 정밀 모델링 및 해석)

  • Jeongseok Kang;Jonggeun Park;Hong-Gye Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.35-43
    • /
    • 2022
  • Precise modeling and analysis of closed bomb test(CBT) combustion using solid propellants was performed. The fluid structure interaction(FSI) method was implemented to analyze the gas and solid phases at the same time. The Eulerian analysis method was applied for the gas phase and grain combustion, and the Lagrangian analysis method was implemented for the grain movement. The interaction between the solid phase grains and the combustion gas was fully coupled through the source term. The volume of fluid(VOF) method was used to simulate the burning distance of the grain and the movement of the combustion surface. The force acting on the grain was comprised of the pressure and gravity acting on the grain burning surface, and the grain burning rate and grain movement speed were considered in the velocity term of the VOF. The combustion analysis was performed for both one and three grains, and fairly compared with the experiments. The acoustic field during grain combustion due to pressure fluctuations was also analyzed.

A New Optical Media API for Real-Time Recording (실시간 기록을 위한 광매체 API)

  • Lee, Min-Suk;Song, Jin-Seok;Yun, Chan-Hee
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.2
    • /
    • pp.75-85
    • /
    • 2007
  • There are many embedded systems which store and play multimedia streams on optical media such as recordable cd and dvd. Some of those are PVRs, DVRs, and camcorders. In this paper we describe the design and implementation of a new, well structured, fully documented, operating system independent and open source optical media API which can be used in various applications and embedded systems. We also design an ISO-9660 compliant optical media layout, an API set and the scenario for real-time recording. To prove the usability, we develop a text application to replace well-known CD-burning software, cdrecord, and a graphic burning application. All the implementations are firstly done on Linux PC environment, and then ported to a commercial embedded system which uses pSOS as an operating system.

Grain Geometry, Performance Prediction and Optimization of Slotted Tube Grain for SRM

  • Nisar, Khurram;Liang, Guozhu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.293-300
    • /
    • 2008
  • Efficient designing of SRM Grains in the field of Rocketry is still the main test for most of the nations of world for scientific studies, commercial and military applications. There is a strong need to enhance thrust, improve the effectiveness of SRM and reduce mass of motor and burning time so as to allow the general design to increase the weight of payload/on board electronics. Moreover burning time can be increased while keeping the weight of the propellant and thrust in desired range, so as to give the time to control / general design group in active phase for incorporating delayed cut off if required. A mathematical design, optimization & analysis technique for Slotted Tube Grain has been discussed in this paper. In order to avoid the uncertainties that whether the Slotted Tube grain configuration being designed is best suited for achieving the set design goals and optimal of all the available designs or not, an efficient technique for designing SRM Grain and then getting optimal solution is must. The research work proposed herein addresses and emphasizes a design methodology to design and optimize Slotted Tube Grain considering particular test cases for which the design objectives and constraints have been given. In depth study of the optimized solution have been conducted thereby affects of all the independent parametric design variables on optimal solution & design objectives have been examined and analyzed in detail. In doing so, the design objectives and constraints have been set, geometric parameters of slotted tube grain have been identified, performance prediction parameters have been calculated, thereafter preliminary designs completed and finally optimal design reached. A Software has been developed in MATLAB for designing and optimization of Slotted Tube grains.

  • PDF

Energy Efficiency Improvement and Field Scale Study of Crematory using Computation Fluid Dynamics (전산유동해석을 통한 화장로의 에너지 효율개선 및 실증연구)

  • Won, Yong-Tae;Lee, Seung-Mok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.95-101
    • /
    • 2019
  • The cremation rate of Korea in 2016 was 82.7% which is four times greater than 20.5% in 1994. As increasing the cremation rate gradually, it cause a shortage of cremation facilities resulting in building more cremation facilities to meet the increasing inquiries on cremation or a large amount of fuels for the longer operation of the crematory. In this study, the crematory system optimizing its thermal efficiency characteristics and also responding to increasing inquiries on cremation was proposed in order for solving such problems, In particular, the heat flow characteristics including a heat transfer coefficient by performing a simulation using computational fluid dynamics (CFD) was investigated. The CFD model was validated with on-site experiments for a cremation facility. As a result of the simulation, the fuel consumption decreased nearly 25% and residence time increased in the main combustor. Also, the improved crematory was constructed with an expanded combustor, heat exchanger, second combustion air system, refractory and insulation material. From on-site experiments, the energy consumption was saved to approximately 54.4%, while the burning time reduced nearly 20 minutes.

A Study on the Combustion Characteristics of Lean Mixture by Radicals Induced Injection in a Constant Volume Combustor (1) (정적연소기에서 라디칼 유도분사를 이용한 희박혼합기의 연소특성에 관한 연구 (1))

  • 박종상;이태원;하종률;정성식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 2004
  • An experimental study was carried out to obtain the fundamental data about the effects of radicals induced injection on premixture combustion. A constant volume combustor divided to the sub-chamber and the main chamber was used. The volume of the sub-chamber is set up to occupy less than 1.5% of that of whole combustion chamber. Radial twelve narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in the sub-chamber will derive the simultaneous multi-point ignition in the main chamber. While the equivalence ratio of pre-mixture in the main chamber and the sub-chamber is uniform. We have examined the effects of the sub-chamber volume, the diameter of passage hole, and the equivalence ratio on the combustion characteristics by means of burning pressure measurement and flame visualization. In the case of radical ignition method(RI), the overall turning time including the ignition delay became very short and the maximum burning pressure was slightly increased in comparison with those of the conventional spark ignition method(SI), that is, single chamber combustion without the sub-chamber. The combustible lean limit by RI method is extended to more ER=0.25 than that by SI method. Therefore the decrease of every emission including NOx and the improvement of fuel consumption is anticipated due to lean burn.

Reaction Characteristics Study of Aluminum-Copper(II) Oxide Composites Initiated by the Electrostatic Discharge (Aluminum-Copper(II) Oxide Composite의 정전기에 의한 반응 특성 연구)

  • Kim, Minjun;Kim, Sung Ho;Kim, Jayoung;Im, Yeseul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.591-598
    • /
    • 2018
  • The reaction characteristics of aluminum-copper(II) oxide composites initiated by the electrostatic discharge were studied as changing the aluminum particle size. Three different sizes of aluminum particles with nano-size copper(II)-oxide particle were used in the study. These composites were manufactured by two methods i.e. a shock-gel method and a self-assembly method. The larger aluminum particle size was, the less sensitive and less violent these composites were based on the electrostatic test. On the analysis of high speed camera about ignition appearances and burning time, the burning speed was faster when aluminum particle size was smaller.

해상 유출 기름 제거 시 미생물을 이용한 제거 기술의 종류와 고려하여야 할 문제점 분석

  • 장승룡
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.68-84
    • /
    • 1999
  • Biodegradation is a natural weathering process by microorganisms to decompose spilled oil or environmental contaminants. To accelerate this process, applying nutrients (fertilizer) or more microorganisms to naturally occurring microorganisms is called 'Bioremediation.' Presently, most popular response technique to spilled oil is mechanical cleanup using booms or skimmers. For the alternative to this technique, chemical dispersants, in-situ burning are used. Another promising alternative is bioremediation and it can clean oil contaminated seashore during enough time. In this paper, types of bioremediation technologies, its usage potential, and important consideration issues when applying this technique were summarized.

  • PDF